UMBC Data Science Meetup: Data Analytics Challenges in Healthcare


Best Practices for Handling Data Analytics Challenges in Healthcare


Aaron Wilkowitz
Customer Engineer, Healthcare & Life Sciences, Google

5:30 – 7:00 pm EDT, Tuesday, 15 September 2020
free and online; register here to get the link


Aaron specializes in Healthcare & Federal and has worked with numerous private companies & federal agencies around reaching better healthcare outcomes and minimizing fraud through smarter data. Previously Aaron worked at a predictive analytics firm APT helping Fortune 200 companies drive to better data-driven decisions.

Agenda
5:30 – 5:35 Welcome
5:35 – 6:30 Aaron Wilkowitz Talk
6:30 – 6:45 Q&A

2020 MCC Virtual Career Fair


2020 MCC Virtual Career Fair


The Maryland Career Consortium (MCC) consists of career center directors and staff of fifteen colleges and universities in the greater Baltimore region, including UMBC.

MCC collectively facilitates the career exploration and development of our students and alumni through collaborative job fairs and networking events. Through these programs, MCC seeks to support the workforce development needs of the region. The consortium also provides an ongoing forum for collaboration and broad-based support for the professional development of its members.

The annual MCC Career Fair provides students (undergraduate and graduate) and alumni from all member institutions the chance to connect with employers around the region. Discover career opportunities that may be your professional calling. This event is just like an in-person job fair, but online! Discover career opportunities that may be your professional calling. This event is just like an in-person job fair, but online! It’s an easy and efficient way to find full-time jobs, internships, and co-ops.

This recruiting event is complimentary for students and alumni across all majors and degrees. Get more information HERE, register HERE, and, if you are already registered, login HERE.

talk: Identifying and Addressing Concerning Behavior in the Digital Age, 12-1 Fri 5/8

two secret service agents confer

The UMBC Cyber Defense Lab presents

Identifying and Addressing Concerning
Behavior in the Digital Age

 

Jason W. Wells
Graduate Student, Cybersecurity MPS
University of Maryland, Baltimore County

12:00–1pm Friday, 8 May 2020, webex

 

The United States Secret Service (USSS) is widely known as the premier law enforcement agency that is charged with protecting some of the most important political figures in the world. Some of these protectees include the President of the United States, the Vice-President, the First Family and Second Family, and Heads of State visiting the United States, to name a few. A major part of the protective mission of the USSS is focused around “protective intelligence,” where agents are trained to identify concerning and threatening behavioral indicators in others, and then to address those issues in a proactive and positive manner and ensure that the community is safe from harm. This proactive methodology has been researched and applied for decades and has a very high rate of success. Now, other law enforcement agencies throughout the country have started to apply this training to their agents and officers. Can these methodologies be used and/or modified to recognize threats in cyberspace as well?


Jason Wells is a former special agent with the United States Secret Service, where he served for nine years from 2005 – 2014. During that time, Mr. Wells was extensively trained in identifying and addressing threat-related and concerning behavioral indicators, and how to address those behaviors in a positive and proactive manner. In 2016, Mr. Wells published his first book Our Path to Safety: A U.S. Secret Service Agent’s Guide to Creating Safe Communities (ISBN-13: 978-0-9982488-0-6) on how the community can identify these behavioral conditions in the same way that federal law enforcement does every day. Mr. Wells earned his undergraduate degree from the Virginia Military Institute and his first graduate degree from Henley-Putnam University in Strategic Security and Protection Management in 2014. Additionally, Mr. Wells has published 11 editorial articles in print media on improving safety and security methodologies in schools and businesses. Currently, he is an SFS scholarship graduate student at UMBC with plans to complete his degree in spring 2020. He and his wife, Blythe, have two children and have lived in Baltimore County since 2008.


Host: Alan T. Sherman, Support for this event was provided in part by the National Science Foundation under SFS grant DGE-1753681. The UMBC Cyber Defense Lab meets biweekly Fridays. All meetings are open to the public. Upcoming CDL Meetings: May 22, Spring SFS Meeting at UMBC, 9:30am-2pm, via WebEx.

UMBC Cyber Dawgs rank #1 among university teams at annual Capture the Flag event

 

UMBC Cyber Dawgs #1 among university
teams at annual Capture the Flag event

 

The UMBC Cyber Dawgs ranked #1 among university teams in a challenging cybersecurity competition hosted virtually by the University of Maryland, College Park on April 18. 

The Capture the Flag event was designed to test teams’ abilities to solve a variety of realistic cybersecurity problems. UMBC went head to head with more than 300 teams from both colleges and industry, placing third overall and #1 among the universities.

Charles Nicholas, professor of computer science and electrical engineering and a Cyber Dawgs faculty advisor, says that the team’s win shows how well-prepared UMBC students are for careers in cybersecurity, and how committed they are to excelling in intercollegiate competition. “It speaks volumes about our students, their enthusiasm, and their character,” he says.

Reflecting on the Cyber Dawgs’ #3 overall finish, Nicholas shares, “The teams that beat us are made up of experienced cyber professionals, who do this sort of work for a living.” To end the competition as the leading university team and trailing just two professional teams was quite a feat, he notes, saying, “Our faculty and our university are very proud of these students.”

The Cyber Dawgs recently won the Mid-Atlantic Collegiate Cyber Defense Competition. They are preparing for the National Collegiate Cyber Defense Competition, which will be held virtually in May.

Adapted from a UMBC News article written by Megan Hanks. Banner image: A person typing on a computer. Photo by Marlayna Demond ’11 for UMBC.

UMBC 16th Digital Entertainment Conference, 11-5 Sat. 4/18 online

UMBC’s 16th Digital Entertainment Conference, online 11-5 Sat. 4/18

 

16th UMBC Digital Entertainment Conference

 

11:00am-5:00pm, Saturday, April 18, 2020

Online on YouTube

The Digital Entertainment Conference (DEC) is an annual event run by the students of the UMBC Game Developer’s Club that brings professional game developers from the area to UMBC to talk about their experience in the game industry. DEC’20 will be held online 11-5 on Saturday, April 18 on the UMBC Game Developers Club YouTube Channel. Attend online to see and interact with professions from the local game industry.

This year’s speakers include four professionals from Zenimax, a video game publisher headquartered in Maryland: Bobby Foster (Figure Artist), Eric Bakutis (Content Designer), Ryan Griffin (Artist), and Katie Hirsch (Programmer).

DEC’20 is free to attend and open to UMBC students, high school students, UMBC alumni and anyone interested in game development. It is sponsored by the UMBC Game Developers club and funded by the COEIT Dean’s Office’s Collaborative Student Funding Program.

UMBC Cyber Dawgs win Mid-Atlantic Collegiate Cyber Defense Competition

 

UMBC Cyber Dawgs win Mid-Atlantic Collegiate Cyber Defense Competition

 

Last weekend, the UMBC Cyber Dawgs took first place in the Mid-Atlantic Collegiate Cyber Defense Competition (MACCDC), which was held virtually. UMBC’s team was one of eight that participated in the competition, fighting to protect their networks efficiently and effectively from simulated cyber threats and attacks. The team topped Penn State; the University of Maryland, College Park; and University of Virginia, which won the national championship for the past two years.

UMBC’s Cyber Dawgs will move on to compete in the National Collegiate Cyber Defense Competition (NCCDC). Due to COVID-19, the competition will be held remotely this year.

How does the competition work?

These regional and national competitions attract leading collegiate cybersecurity teams from across the nation. They put teams in situations that mimic scenarios they might encounter working to secure and protect online systems for government agencies and companies. Throughout each challenge, teammates work together to protect their systems from hackers and cyber attacks. At the same time, they keep their networks accessible to the users relying on them. 

Meet the team

The MACCDC was about 14 hours long, and was held over two days. During the competition, the teams were not permitted to interact with their coaches Charles Nicholas, professor of computer science and electrical engineering (CSEE), and Rick Forno, senior lecturer in CSEE.

The winning UMBC team included Anna Staats ‘20, computer science; RJ Joyce ‘18, M.S. ‘20, computer science; Cyrus Bonyadi, Ph.D. ‘23, computer science; Drew Barrett ‘20, computer science; Seamus Burke ‘20, computer science; Henry Budris ‘22, computer science; Chris Skane ‘21, computer science; and Nikola Bura ‘21, computer science. 

“We are so proud of our team, and their ability to work together as a team under such extraordinary conditions,” says Nicholas.

This is the third time in six years that the Cyber Dawgs have won the MACCDC. The UMBC team won the national championship in 2017.


Adapted from a UMBC News article by Megan Hanks. Banner image: Student using a computer. Photo by Marlayna Demond ’11 for UMBC.

Online talk: Synergy-based human-machine interfaces, 1-2 3/23, Webex

To investigate the neural representations of kinematic synergies, scalp electroencephalographic (EEG) signals and hand kinematics are recorded during representative types of hand grasping.

Synergy-based human-machine interfaces

Ramana Vinjamuri
Harvey N. Davis Distinguished Assistant Professor
Stevens Institute of Technology

 

1:00-2:00 pm Monday, 23 March 2020

Online Webex meeting

Human-machine interfaces (HMIs) have not only become popular technologies but have become the hope of many individuals for restoring their lost limb function. Any HMI has two important intrinsic design components—(i) decode the human commands and (ii) controlling the machine to convert that command into action. Decades of research went into making the interface between the human and the machine seamless but were unable to effectively address the inherent challenges, namely, complexity, adaptability, and variability. To overcome the above challenges, it is critical to computationally understand and quantitatively characterize the human sensorimotor control. Emerging areas in HMIs critically depend on the ability to build bioinspired models, experimentally validate them and utilize them in adaptive and intuitive control. The human hand with high dimensionality encompasses the three inherent challenges and may serve as an ideal validation paradigm. How the central nervous system (CNS) controls this high dimensional human hand effortlessly is still an unsolved mystery. To address this high dimensional control problem, many bioinspired motor control models have been proposed, one of which is based on synergies. According to this model, instead of controlling individual motor units, CNS simplifies the control using coordinated control of groups of motor units called synergies. However, there are several unanswered questions today— Where are synergies present in CNS? What is their role in motor control and motor learning? By combining the concepts of human motor control, computational neuroscience, machine learning and validation with noninvasive human experiments, can we answer these fundamental questions? The goal of this research is to develop efficient, seamless and near-natural human-machine interfaces based on biomimetically inspired models.

Ramana Vinjamuri received his Ph.D. in Electrical Engineering in 2008 specialized in dimensionality reduction in control and coordination of human hand from the University of Pittsburgh. He worked as a postdoctoral research associate (2008-2012) in the field of Brain Machine Interfaces (BMI) to control prosthesis in the School of Medicine, University of Pittsburgh where he received Mary E Switzer Merit Fellowship from NIDILRR in 2010. He worked as a Research Assistant Professor in the Department of Biomedical Engineering at the Johns Hopkins University (2012-2013) in the area of neuroprosthetics. He is currently an Assistant Professor in the Department of Biomedical Engineering at Stevens Institute of Technology (2013-Present). In 2018, he received Harvey N Davis Distinguished Teaching Award for excellence in undergraduate and graduate teaching. He received the NSF CAREER Award in 2019. His other notable research awards are from USISTEF and New Jersey Health Foundation. He also holds a secondary appointment as an Adjunct Assistant Professor at Indian Institute of Technology, Hyderabad, India.

Webex talk: John Mitchell: Will Blockchain Change Everything? Fri 3/27 1-2pm

Lockheed Martin Distinguished Speaker Series

Will Blockchain Change Everything?

Dr. John Mitchell
Mary and Gordon Crary Family Professor
Departments of Computer Science & Electrical Engineering
Stanford University

1:00-2:00pm EST, Friday, 27 March 2020
Webex meeting hosted by Anupam Joshi
https://umbc.webex.com/meet/joshi

Far from serving only as a foundation for cryptocurrency, blockchain technology provides a general framework for trusted distributed ledgers. Over the past few years, their popularity has grown tremendously, as shown by the number of companies and efforts associated with the Linux Foundation’s Hyperledger project, for example. From a technical standpoint, a blockchain combines a storage layer, networking protocols, a consensus layer, and a programmable transaction layer, leveraging cryptographic operations. The distributed state machine paradigm provides atomicity and transaction rollback, while consensus supports distributed availability as well as certain forms of fair access. From an applications perspective, blockchains appeal to distributed networks of independent agents, as arise in supply chain, credentialing, and decentralized financial services. The talk will look at the potential for radical change as well as specific technical challenges associated with verifiable consensus protocols and trustworthy smart contracts.

John Mitchell is the Mary and Gordon Crary Family Professor in the School of Engineering, Professor of Computer Science, co-director of the Stanford Computer Security Lab, and Professor (by courtesy) of Education. He was Vice Provost at Stanford University from 2012 to 2018. Mitchell’s research focusses on programming languages, computer, and network security, privacy, and education. He has published over 200 research papers, served as editor of eleven journals, including Editor-in-Chief of the Journal of Computer Security, and written two books. He has led research projects funded by numerous organizations and served as advisor and consultant to successful small and large companies. His first research project in online learning started in 2009 when he and six undergraduate students built Stanford CourseWare, an innovative platform that served as the foundation for initial flipped classroom experiments at Stanford and helped inspire the first massive open online courses (MOOCs) from Stanford. Professor Mitchell currently serves as Chair of the Stanford Department of Computer Science.

Webex Talk: Hard-Learned Lesson in Defense of a Network, 12-1 Fri 3/27

The UMBC Cyber Defense Lab presents

Hard-Learned Lesson in Defense of a Network

Dan Yaroslaski
Former Operations Officer at Marine Forces Cyberspace Command, Colonel, USMC


12–1:00pm, Friday, 27 March 2020
WebEx: https://umbc.webex.com/meet/sherman

Often network defenders fail to take into account organizational culture when attempting to provide a secure, reliable, and usable enterprise network. Users and process leaders often fall victim to the false allure of the value of networked systems, without asking the question, “Should this be networked?” Collectively, organizations also forget that networks are a combination of the humans who use the network, the personas we all have to form to gain access to this manmade domain, and the interplay of logical and physical network architecture manifested in geographical locations. The value of some simple military principles—including defense-in-depth, mission focus, redundancy, and resiliency versus efficiency—can help a network defender better advise everyone from the “C Suite” decision-makers to the average network user, on how to have a secure network while accepting reasonable limitations.

Colonel Dan Yaroslaski is a career Marine with over 30 years of service to the nation. He started as an enlisted anti-armor missileman, who then became an Assault Amphibian Vehicle Officer (AAV’s are 27 Ton armored amphibious descendants of the WW II vehicles used from Tarawa to Iwo Jima). He has made a career of integrating technology and human beings to form cohesive combat organizations. Dan’s diverse career placed him at the forefront of high-end, top-secret compartmentalized planning and execution, to the extremely human act of advising an Afghan National Army Kandak (Battalion). During his five-year tenure at Marine Forces Cyberspace Command, he successfully architected new techniques that took advantage of boundary defenses, to new and innovative ways to integrate traditional warfare methods with cyberspace operations, as highlighted in a recent NPR story about USCYBERCOM’s Operation GLOWING SYMPHONY. Dan also spent time creating effective policy directing network operations and defense, to include an extremely frustrating year negotiating the interplay of network operations, operations in the information environment, and Marine Corps culture. Dan and his wife are now empty nesters, so they spend an enormous amount of time nurturing two dogs to fill the void left by their children. As the Rolling Stones point out, “What a drag it is getting old.”

Host: Alan T. Sherman,

Support for this event was provided in part by the National Science Foundation under SFS grant DGE-1753681. The UMBC Cyber Defense Lab meets biweekly Fridays. All meetings are open to the public. Upcoming CDL Meetings:

  • Apr 10, Russ Fink (APL), ransomware
  • Apr 24, Lance Hoffman (GWU), policy
  • May 8, Jason Wells (UMBC SFS scholar), law enforcement
  • May 22, Spring SFS Meeting at UMBC, 9:30am-2pm, ITE 456

talk: Autonomous Agents, Deep Learning, and Graphs for Cyber Defense, 12-1 Fri. 3/13

The UMBC Cyber Defense Lab presents

Autonomous Agents, Deep Learning,
and Graphs for Cyber Defense

Dr. Hasan Cam
Army Research Laboratory

12–1 pm Friday, 13 March 2020, ITE 227, UMBC


Cyber resilience usually refers to the ability of an entity to detect, respond to, and recover from cybersecurity attacks to the extent that the entity can continuously deliver the intended outcome despite their presence. Cybersecurity tools such as intrusion detection and prevention systems usually generate far too many alerts, indicators or log data, many of which do not have obvious security implications unless their correlations and temporal causality relationships are determined. In this talk, I will present methods to first estimate the infected and exploited assets and then take recovery and preventive actions using autonomous agents, deep learning, and graphs. Autonomous adversary and defender agents are designed such that the adversary agent can infer the adversary activities and intentions, based on cybersecurity observations and measurements, while the defender agent aims at estimating the best reactive and pro-active actions to protect assets and mitigate the adversary activities. The graph thinking and causality analysis of cyber infection and exploitation helps predict the infection states of some assets. This prediction data of infections is taken as input data by deep reinforcement learning to train agents for determining effective actions. This talk will discuss some preliminary results from the development of building an automated system of autonomous agents to provide cyber resiliency over networks.

Hasan Cam is a Computer Scientist at US Army Research Laboratory. He currently works on the projects involved with autonomous agents, active malware defense, cyber resiliency, and risk assessment over wired, mobile, and tactical networks. His research interests include cybersecurity, machine learning, data analytics, networks, algorithms, and parallel processing. He served as the government lead for the Risk area in Cyber Collaborative Research Alliance. He has previously worked as a faculty member in academia and a senior research scientist in the industry. He has served as an editorial member of two journals, a guest editor of two special issues of journals, an organizer of symposiums and workshops, and a Technical Program Committee Member in numerous conferences. He received a Ph.D. degree in electrical and computer engineering from Purdue University, and an M.S. degree in computer science from Polytechnic University, New York. He is a Senior Member of IEEE.

Host: Alan T. Sherman,

Support for this event was provided in part by the National Science Foundation under SFS grant DGE-1753681. The UMBC Cyber Defense Lab meets biweekly Fridays. All meetings are open to the public. Upcoming CDL Meetings:

  • Mar 27, Dan Yaroslaski, cybercommand
  • Apr 10, Russ Fink (APL), ransomware
  • Apr 24, Lance Hoffman (GWU), policy
  • May 8, Jason Wells, law enforcement
  • May 22, Spring SFS Meeting at UMBC, 9:30-2, ITE 456
1 2 3 30