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A B S T R A C T

In this paper, we show how surgeons can interact with medical images using finger and hand
gestures in two situations: one hand-free and no hands-free interaction. We explain how inter-
action with only one hand or a couple of fingers is beneficial and can help surgeons have
continuous interaction, without the need to release their tools and leave the operating table,
saving valuable patient time. To this end, we present RadSense, an end-to-end and unobtrusive
system that uses Doppler radar-sensing to recognize hand and finger gestures when either one or
both hands are busy. Our system permits the following important capabilities: (1) touch-less input
for sterile interaction with connected health applications, (2) hand and finger gesture recognition
when either one or both hands are busy holding tools, extending multitasking capabilities for
health professionals, and (3) mobile and networked, allowing for custom wearable and non-
wearable configurations. We evaluated our system in a simulated operating room to manipulate
preoperative images using four gestures: circle, double tap, swipe, and finger click. We collected
data from five subjects and trained a K-Nearest-Neighbor multi-class classifier using 15-fold cross
validation, achieving a 94.5% precision for gesture classification. We conclude that our system
performs with high accuracy and is useful in cases where only one hand or a few fingers are free to
interact when the hands are busy.
1. Introduction

Healthcare professionals, such as surgeons, use imaging technology on a daily basis for providing patient care. One challenging use-
case that surgeons face, involves interacting with medical images in a sterile way, when either one or both hands are busy. The chal-
lenges are apparent as surgery is a collocated collaborate practice Mentis (2017) and the ability to learn and see the body is critical and
difficult to achieve Mentis, Chellali, and Schwaitzberg (2014). To effectively communicate peculiar details of the anatomy, surgeons
must talk, point, instrument tools, and interact with medical images while abiding by requirements for sterility Mentis (2017). When
surgeons want to interact with images they are often holding tools in hand. To release or not release the tools is an important decision
that the surgeonmust make. In most cases, image interaction needs to occur while holding a surgical tool. In O'hara et al. (2014a, 2014b)
they showed that there was a clinical need to provide image control while holding surgical instruments. For example, in minimally
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invasive procedures, where surgeons use small cuts and a camera to see inside the body, surgeons must hold a laparoscope and scissor
tool while interacting with medical images Mondada (2003). How to control and interact with an imaging system while utilizing both
hands is therefore critical and challenging. It was suggested in O'hara et al. (2014a, 2014b) that image manipulation, using gestures and
voice commands, can be combined with the use of surgical tools, preventing the surgeon from removing gloves and re-scrubbing, which
takes precious time. From this understanding, we explain how previous systems will not meet these requirements and howwe developed
a new system that allows for finger and hand gestures in two situations: one hand-free and no hands-free interaction while holding
surgical tools.

Previous gesture recognition systems, computer vision Mondada (2003); Tan, Chao, Zawaideh, Roberts, and Kinney (2013); Jacob,
Wachs, and Packer (2013); Ebert, Hatch, Ampanozi, Thali, and Ross (2012); Feng et al. (2018); Ruppert, Reis, Amorim, de Moraes, and
da Silva (2012) and wearable based Jalaliniya, Smith, Sousa, Büthe, and Pederson (2013); Schwarz, Bigdelou, and Navab (2011); Hettig
et al. (2015), have been developed to help surgeons in fields such as radiology and urology interact with images in a sterile way.Majority
of these systems require the surgeon to release their tools and are uncomfortable and get in the way. For example, vision-based systems,
Microsoft Kinect being the most popular, show that interaction with images, requires the surgeon to use large hand motions to perform
actions such as zooming in and out, panning, rotating, or changing the brightness. To perform these actions surgeons must stand at least
four feet from the Microsoft Kinect, release their tools, and hold their hands positioned towards the device and monitor. In addition,
tracking fingers while holding an object in hand is often a difficult task for the Kinect. Vision-based systems also require line-of-sight for
interaction, are impacted by lighting, and fail when obscured by sterile drapes and sheets. On the other hand, wearable solutions do
allow for interaction while hands are busy, but they are cumbersome and get in the way, as they most often use inertial measurement
units (IMUs) or Electromyography (EMG) sensors, which require adherence to the skin or the area being observed for gesture
recognition.

To mitigate the disadvantages presented by computer vision and wearable devices, researchers Chi et al. (2018, 2016, pp. 1–10); Yao
et al. (2018); Li and Zhu (2016); Khan et al. (2016); Li, Robucci, Banerjee, and Patel (2015) have proposed the use of ubiquitous ambient
signals such as WiFi, Bluetooth, and radio frequency (RF) for robust gesture and activity recognition. Ambient signals allow for sensing
in different environmental conditions without devices that have to be worn. Majority of these systems have not been evaluated for
gesture recognition with busy hands and utilize existing WiFi infrastructure, which we argue is problematic in a hospital setting. For
example, devices connecting and reconnecting to the network, limit network bandwidth, which affects system accuracy and response.
The WiFi access points are typically omni-directional and pick up background motion, which adds noise to the system. Also, hospitals
have multiple windows, floors, and rooms, which creates high risk for spotty (WiFi dead zone) connections with not enough coverage.

To this end, we developed a new hybrid, both wearable and non-wearable, gesture recognition system we call RadSense, short for
radar sensing. RadSense is an end-to-end, mobile, and unobtrusive directional radar system, that uses the Doppler Effect to sense in-air
hand and finger gestures for continuous sterile medical image interaction when one or both hands are busy. The system captures motion
using radar and wirelessly transmits the motion via Bluetooth Low Energy (BLE) network to a computer for gesture classification and
image control. The system can be worn on the human body or attached to an object with Velcro enabling unobtrusive gesture detection,
as it is small and does note require adherence to the skin. Accurate gesture detection can also occur when the system is covered by a
sterile gown in order to meet requirements of sterility. We evaluated our system in a simulated operating room (OR) (see Fig. 1) to
manipulate preoperative images using four gestures: circle, double tap, swipe, and finger click. We show how surgeons can use these
gestures to interact withmedical images two situations: one hand free and no hands free interaction. We collected data from five subjects
and trained a K-Nearest-Neighbor multi-class classifier using 15-fold cross validation, achieving a 94.5% precision for gesture classi-
fication. The design, implementation, and evaluation of our system provides the following research contributions:
Fig. 1. Simulated OR: the MicroDicom CT scan image viewer application (a), the laparoscopic view (b), the laparoscopic trainer (c), the radar
attached to an overhead light (d).
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1. Design of a new end-to-end and unobtrusive gesture recognition system that uses radar and the Doppler effect for interacting with
medical images. The system can be worn and covered by a sterile gown or attached to an object for unobtrusive hand and finger
gesture recognition while holding surgical tools.

2. Hand and finger gesture detection when either one or both hands are busy using only two features: zero-crossings and magnitude
difference of the signal. We show that our system can detect gestures with a precision of 94.5% using a K-Nearest Neighbor classifier
with low false positives.

3. An evaluation of our system in a simulated OR using four gestures: circle, double tap, swipe and finger click.

2. Related work

Touch-less gesture recognition systems help facilitate with the sterile interaction between surgeons and the digital mediums they
want to control de la Barre, Chojecki, Leiner, Muhlbach, and Ruschin (2009). In practice surgeons interact with two types of intra-
operative imaging systems: a main display that shows the anatomy of the human body for operating, and a secondary display for
pre-operative images Mentis (2017). For medical image interaction with these systems, several gesture recognition systems have been
proposed and studied in literature with the focus in two main categories. This includes vision-based and wearable solutions. Each
solution has its own set of limitations and advantages which we describe next.

2.1. Vision-based approaches

Vast majority of research uses vision-based gesture recognition systems like the Kinect O'hara et al. (2014a, 2014b); Yusoff, Basori,
and Mohamed (2013); Lopes et al. (2017); Gallo, Placitelli, and Ciampi (2011) to capture in-air arm, hand and body motions, skeletal
information, and voice commands for interacting with medical images. The Kinect uses depth, IR, color, and sound sensing. Fields such
as radiology Tan et al. (2013); Jacob et al. (2013); Ebert et al. (2012, pp. 301–307); Feng et al. (2018) and urology Ruppert et al. (2012)
have successfully used the Kinect to interact with 2D and 3D medical image data using hand and arm gestures. For example, Kenton
O'hara et al. (2014a, 2014b) developed a gesture system for manipulating a 3Dmodel in vascular surgery using the Kinect. In their study,
they showed that surgeons could collaborate, communicate, and interact with the system in a sterile way using one hand, two hands, and
voice controls. The surgeon however, is unable to hold a tool and track a finger, as the Kinect is more suited for hand, arm, and body
tracking. For more fine grained gestures, researches have turned to devices for finger tracking like the Leap motion Bizzotto et al. (2014,
pp. 655–656); Cho, Lee, Park, Ko, and Kim (2018). The Leap motion can accurately track objects while being held in the hand. A
touch-free medical interface, using Leap motion, was developed in Nathaniel Rossol (2014), tracking a pen while being held in the hand
for gesture recognition. When compared to the Kinect, Leap motion has a smaller field of view (FoV) and shorter range detection. We
argue that positioning the device near the FoV of the surgeons hands, while operating can therefore be difficult. It was shown in P.
Hughes (2015) that surgeons prefer the Kinect over the Leap motion due to its wider Fov and range, but found the Kinect to be tiresome,
as surgeons were physically exhausted from holding their hands and arms up. Although useful, vision-based systems are limited by their
range of detection, require line-of-sight sensing for interaction, are affected by lighting conditions [14], and fail when obscured by
sterile drapes and sheets. Unlike vision based approaches, our system is instrumented with a radar, capable of detecting hand and fine
grained finger motion while holding surgical tools. Our system is not as sensitive to lighting conditions and can travel through material,
with the ability to be placed behind a sterile gown or attached to an overhead medical light for interaction.

2.2. Wearable approaches

Devices that can be worn on the human body, often requiring attachment to the skin and body parts, known as wearables, have been
used for gesture interaction with medical images. For example, Shahram Jalaliniya et al. Jalaliniya et al. (2013) used inertial mea-
surement units (IMUs) worn on the wrist and pressure sensitive floors (non-wearable) for detecting hand and foot gestures to interact
with medical images. In addition, the use of inertial sensors Schwarz et al. (2011, pp. 129–136) worn on the body have been used for
multiple user-defined gestures by tracking relative pose within a performed gesture. While others have used commercial products like
the Myo arm band Hettig et al. (2015) for exploring 3D medical image data. We argue that these systems are uncomfortable, having to
touch the skin, and are obtrusive, getting in the way of surgeon, not allowing the use of gestures while holding surgical tools. Our radar
gesture interface can also be worn, but does not require attachment to arm, hands, or skin of the surgeon. Instead our radar can be
attached on the chest via Velcro. We argue that this allows for an unobtrusive way to recognize gestures that may be more comfortable.
Further more, we can attach our radar to other objects, such as a overhead medical light, for gesture interaction. In both cases, our
system can be used while holding surgical tools.

3. The RadSense system

The RadSense system (see Fig. 2) allows a surgeon to perform gestures, while holding surgical tools, to interact with secondary
intraoperative imaging systems. The system allows the surgeon to remain at the operating table, not having to release tools or scrub out
in order to interact with images. The system works by using directional radar, to minimize background noise, and the Doppler effect to
capture hand and finger motion. This motion is captured from the radar using a custom built data collection module. The data collection
module sends the captured motion to a data relay unit which transmits the motion to a computer via BLE. The computer then receives
the motion detects and classifies gestures, which are then used as commands to control a secondary intraoperative imaging system. In
3



Fig. 2. System architecture design: from right to left, radar (1), custom data collection module (2), data relay (3), data analysis computer (4), image
interaction (5).
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the following sections we describe the details of how to interact with our system through gestures, how our system captures hand and
finger motion for gesture detection, the hardware components of the system, an algorithm we developed to detect gestures with high
precision, and the features we use to reliably distinguish gestures for classification.
3.1. Gesture set and interaction

We created four initial gestures that can be used for interaction with the secondary intraoperative imaging system shown in
Fig. 3(a–d). Our system is not restricted to this gesture set as any gesture can be created, by following a set of rules. The rules include:
varying the length of a gesture, making one motion longer than the other, varying the size of the gesture, making a large motion with the
hand compared to a small gesture with the finger, and the location of the gesture, far or close to the radar sensor. We used these rules to
develop four initial gestures that can be used while holding surgical tools in two cases described next.

3.1.1. One hand-free interaction
One hand interaction involves the surgeon having only one hand free to perform hand gestures and interact with images. In this

scenario the surgeon can hold a surgical tool in one hand while still performing gestures with the second hand, shown in Fig. 4. The radar
is worn on the chest of the surgeon for gesture detection. In this position, the surgeon can perform the following three gestures while
holding one tool: hand swipe to scroll through images, a hand circle switch between commands, and a hand double tap to flip an image
left or right (see Fig. 3(a–c)). The hand swipe occurs in front of the chest, the arm extended half the length of the arm, with a swinging
motion either up or down. The circle is performed with the arm extended in front of the chest, the hand then moves either clockwise or
counter clockwise, and performed five times, named circle 5 gesture, in order to create a long distinguishable gesture. The double tap
occurs with the arm extended as far as possible in front of the chest. The four fingers of the hand are then moved towards the palm and
then away from the palm twice.

3.1.2. No hands-free interaction
No hands free interaction involves the surgeon having no hands free, but only the index finger available to perform gestures. In this

scenario the surgeon can hold two surgical tools, one in each hand while still being able to interact with medical images, shown in Fig. 5.
For example, if using a laparoscopic grasper or scissors, the index finger used to manipulate the endefector is free. For this configuration,
the radar is attached to an overhead medical light, so as to be in view of the finger. In this position, the surgeon can perform a finger click
gesture, similar to pulling a trigger and then releasing, to flip an image left or right. Performing the same click can also be used to toggle
between flipping left or right. In this case the radar is attached to an overhead medical light, angled towards the finger for gesture
detection.
Fig. 3. Gesture Set: swipe (a), circle 5 (b), double tap (c), and finger click (d).

4



Fig. 4. One hand interaction: viewing the image (a), performing a gesture (b), RadSense worn on chest (c) busy hand holding tool (d).

Fig. 5. No hands interaction: RadSense attached to medical light (a), viewing image (b), performing finger gesture while holding a tool (c) busy hand
holding tool (d).
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3.2. Doppler effect primer

Our system uses the well known Doppler effect or Doppler Shift principal to sense hand and finger motion. The Doppler Shift
phenomenon is observed when a source emits a signal that is reflected back by a moving object and the received signal is observed to
have a change in frequency. In our approach, we chose a radar that has the source and receiver co-located. When a user moves their hand
or fingers toward or away from the radar, it reflects the emitted radio waves causing a shift in frequency. The received signal captured by
the radar can be described by the following equation:

fr ¼ ft
�cþ v
c� v

�
(1)

where, fr is the frequency of the received wave, ft is the frequency of the transmitted wave, v is the velocity of the object (moving hand/
5
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fingers), and c is the speed of light. The shift in frequency is defined as fd ¼ fr - ft and can be used to determine gestures.

3.3. Quadrature signal processing

Detecting the Doppler shift from hand and finger motion is done using quadrature signal processing. First, our radar system de-
modulates fr from equation (1) into the baseband in-phase I and quadrature-phase Q. Demodulation is a process of detecting a received
signal represented as a quadrature signal with real part I and complex part Q. In radar applications we can represent quadrature signals
as complex numbers with in-phase I referring to the momentary amplitude of the real-signal and the quadrature-phase Q referring to the
momentary amplitude of the real signal shifted by 90�. Once we obtain the demodulated I and Q components we can calculate the phase
of the signal to determine direction of the hands and fingers. To do this we use the differentiated and cross-multiply algorithm (DACM)
proposed in Wang et al. (2014) to compute the instantaneous phase of the quadrature signal to obtain fd from equation (1). A positive
phase value describes an object moving toward the radar and a negative phase value describes an object moving away from the radar.
We use this principal to detect direction of the hands and fingers moving towards and away from the radar. The DACM algorithm given
in discrete form Wang et al. (2014), i.e:

ΘðnÞ¼
Xn

k¼2

IðkÞ�½QðkÞ � Qðk � 1Þ� � QðkÞ�½IðkÞ � Iðk � 1Þ�
IðkÞ2 þ QðkÞ2 (2)

where ΘðnÞ represents the instantaneous phase and IðkÞ and QðkÞ represent the kth I and Q channel sample from the frame of size n. We
chose the DACM algorithm as it has advantages over the widely used arctangent demodulation method that can handle the phase
discontinuity problem by automatically phase unwrapping for phase reconstruction without ambiguities Gu (2016).

3.4. Hardware design

The hardware for our system (see Fig. 6) uses the K-LC2 25-GHz K-band Doppler radar transceiver RFBeam (2016), a custom built
data collection module, and a RFduino micro-controller to obtain the demodulated I and Q signal channels for gesture recognition. Our
hardware design is simple, small, and low cost; all components total less than $80. In the following sections, we introduce the major
subsystems of our hardware platform.

3.4.1. Radar
To sense hand and finger motion, we used the K-LC2 continuous wave (CW) radar, capable of sending Doppler shifts. The K-LC2

cannot be used to detect the range or distance of an object, but only displacement of movement of the object due to lack of modulated
spectral information Gu (2016). Two other types of radar technology exist known as frequency modulated continuous wave (FMCW)
radar and pulse or impulse radar. Theses two types of radar are capable of sensing range information. We chose CW radar over FMCW
and impulse radar as CW radar has higher accuracy in detecting movement, can operate in low power, and requires simpler hardware
and signal processing techniques to condition the input signal Gu (2016).

3.4.2. Custom data collection module
To capture hand and finger motion, we designed a custom data collection module which connects to our radar, by leveraging the

design in Li et al. (2015). To do this we created a printed circuit board (PCB), that amplifies and applies a low-pass filter on the captured I
and Q signals, from the radar, for short-range movement detection. We define short range as the distance from the chest of a subject to
end of their arm fully extended. The data collectionmodule includes a 12-bit ADC that is used to transmit the I andQ signals to a Simblee
RFduino micro-controller via a serial peripheral interface bus (SPI). We housed the data collection module inside a 3D printed case with
Velcro attached to the back side. The Velcro allows our system to be worn on the human chest or attached to an object such as an
Fig. 6. Custom PCB design (a), including the front view of the circuitry (left), and back view of the radar attachment (right), and the Wearable Radar
Interface design (b).
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overhead medical light for gesture detection.

3.4.3. Data relay
To transmit the hand and finger motion from our custom data collection module to a computer, we designed a data relaymodule. Our

data relay module uses the Simblee RFduino micro-controller. This micro-controller houses an ARM Cortex-M0, running at 16 MHz, and
a BLE module used to transmit the digital I and Q signals sampled every 3 ms to a central computer.

3.4.4. Hardware power and memory requirements
The radar module consumes 35mA at 5 V (0.175W), the RFduino consumes 10mA at 3.3 V (0.033W), L324 consumes 0.8 mA at 3 V

(0.0024 W), the AD7924 consumes 2 mA at 3.0 V (0.006 W), and the AD780 consumes 1 mA at 3.0 V (0.003 W). The total power
consumption of the wearable radar interface is 0.2194 W while transmitting data. A 3.7 V lithium-ion rechargeable battery is used to
power our system with appropriate step up/down regulators. The RFduino micro-controller program uses less than 24KB of memory.
3.5. Gesture detection

To reliably classify gestures, we developed a highly precise real-time gesture detection algorithm shown in Fig. 7. Our detection
algorithm is used to detect the start and end of a gesture. Once the start and end of a gesture has been determined we calculate a set of
features to classify gestures. We also, create a simple threshold to determine if there is no movement. This is explained in the following
three sections.

3.5.1. Step 1
In step 1, We capture a frame size of 2080 samples of raw I andQ channel values from the radar shown in Fig. 7 (a). We chose a frame

size of 2080 by observing the average window size used during labeling for data collection which was about 1040 samples. We wanted a
larger frame size, double in our case, to allow for our frame to include additional motion information for easier detection as our gestures
create an impulse in the signal and then flat-lines. This window size corresponds to about 6.23 s of motion for 2080 samples, sampled
every 3 ms.

3.5.2. Step 2
We find the start and end points within the captured frame shown in Fig. 7 (b). To do this we calculate the velocity of the I and Q

quadrature signal by taking the forward difference of the instantaneous phase using the DACM algorithm shown in equation (2). The
forward difference is then calculated as:

ΘdðnÞ¼Θðnþ 1Þ � ΘðnÞ (3)

whereΘdðnÞ represents the phase difference corresponding to the gesture velocity. To de-noise the velocity signal while maintaining the
shape of its original curve we apply a Savitzky-Golay (SG) filter with polynomial order equal to 21 and frame length equal to 89. The
filtered velocity signal is a good indicator for detecting hand and finger motion as little motion happens betweenþ0.2 m/s and�0.2 m/s
and hand and finger motion happens outside this range. In Fig. 7 (b) it is clear that there is a larger variation in velocity where the
gesture happens compared to where there is no movement. We use this observation to calculate the change points by observing where
the root-mean-square (RMS) level of the velocity signal changes most significantly. The inflexion points help us identify the start and end
of a gesture. For our purposes we want to identify two inflexion points that divide our gesture frame into three sections. We use the
changepoint detection method Lavielle (2005); Killick, Fearnhead, and Eckley (2012) to find two change points K ¼ 2, by minimizing the
function:
Fig. 7. Gesture detection algorithm: step 1, capture the raw I and Q with 2080 samples (a), step 2, calculate the velocity of motion, filter the velocity
with Savitzky-Golay filter, calculate the change points that indicate the start and end of the gesture, and compare the gesture mean with a pre-
determined threshold (b). If the mean is greater than the threshold we continue to step 3 and calculate the I/Q gesture frame by finding the midpoint
between change points and extending the frame 520 samples to the left and right (c).
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JðKÞ¼
XK�1 XKrþ1�1

Δðxi; χð½xKr…xkrþ1 � 1�ÞÞ þ βK (4)

r¼0 i¼Kr

where JðKÞ is the total residual error from the three sections for two change points K ¼ 2, for a given signal xKr ;…; xKrþ1, given the
empirical estimate χ and the deviation measurement Δ, where β represents the fixed penalty added for each change point. We use the
RMS empirical estimate statistic and find two change points indicating the start and end of a gesture. After finding the two change points
we calculate the mean of the velocity signal between the two change points. We created a thresholdþ0.2 m/s by averaging a total of 60 s
worth of collected velocity values with no movement. If the mean of the velocity signal, defined by the change points, falls below this
threshold we ignore the gesture and consider it as no movement. In the other case we continue to step 3.

3.5.3. Step 3
We calculate the midpoint between the two change points and extend our frame 520 samples to the right and to the left of the

midpoint Fig. 7 (c). We use these left and right points for the start and end of our raw I and Q channel gesture frame. If the gesture is off
center within the 2080 sample frame and we can not extend our frame to the right or to the left by 512 samples, we truncate the frame to
the max sample less than 512. At this point our gesture is still unknown, but we are more confident that a gesture happened. Our gesture
frame is now created and we can continue to calculate features to classify the gesture.

3.6. Feature extraction

We experimentally developed two features to reliably classify our four gestures. To do this we extract two features from our captured
gesture frame of 1040 samples. Previous works have used zero-crossing Gao et al. (2016) and the magnitude differences between the
highest crest and the lowest crest through each signal Wan, Li, Li, and Pal (2014) achieving above 90% accuracy for classification. Also,
the set of measurable properties using the Doppler effect were described in Gupta, Morris, Patel, and Tan (2012) for sound waves that
are also applicable to radar. We base our feature set off this work and show how we can obtain higher than 94% accuracy for classi-
fication explained in our evaluation section. The two features are described next.

3.6.1. Sum of the zero-crossings
The first feature we calculated was the sum of the zero-crossings of the quadrature signal. We normalize each channel so that the

signal is centered at zero along the x-axis. The zero-crossings is proportional to the phase of the signal. To find the zero crossings for each
channel, I and Q, we look for the following conditions: Xi < 0 and Xi � 1 > 0 and Xi > 0 and Xi � 1 < 0 where Xi represents the ith
sample for channel I or Q. We then take the sum of all zero-crossings found for both I and Q as a feature.

3.6.2. Magnitude difference
The second feature we calculate is the difference of the maximum, minus the minimum, magnitude. The magnitude of the signal is

proportional to the amplitude of the signal. The amplitude is higher when the hand and fingers approach the radar and lower when they
recede. The magnitude difference is calculated as:

bM ¼maxðMðtÞÞ � minðMðtÞÞ (5)

where bM is the magnitude difference, and MðtÞ is the magnitude defined as:

MðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðtÞ2 þ QðtÞ2

q
(6)

where t is the tth sample of the signal.

3.7. Importance of features

When the two features, discussed previously, are used together, they cluster the feature set into 4 categories (see Fig. 8 (a)). This is
important as it makes our machine learning model more accurate. The magnitude difference helps distinguish a large gesture, hand
performing circle 5 gesture, from a small gesture, finger performing finger click. The sum of the zero-crossings help distinguish between
the length of the gesture, short, finger click and double tap, or longer, swipe and circle 5. The two features we chose may make our
system less robust if additional gestures are added. To retain high accuracy of our system, we suggest to use additional sensors, each with
their own trained models of just a few gestures. Thus, the gesture set can be extended by adding more sensors.

4. Evaluation

We evaluated our system in a simulated OR, by training a K-Nearest-Neighbor (KNN) multi-class classifier using a 200 labeled
gesture data set composed of the sum of the zero-crossings and magnitude difference features described previously. We collected our
data from five subjects, with Institutional Review Board (IRB) approval, two male, and three female. Each subject was asked to perform
our four gestures 10 times each. We trained each subject on how to perform gestures, and then collected the gesture data. We used a
8



Fig. 8. Sum of zero crossing features, and magnitude difference, the circle indicates correct prediction and x indicates incorrect prediction (a), and
Confusion matrix classification accuracy for radar training data (b).
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camera to record video of the gestures for accurate labeling of each gesture. The magnitude difference (y-axis) and sum of zero-crossings
(x-axis) features are shown in Fig. 8 (a).
4.1. KNN evaluation

For the KNN model we used the euclidean distance and squared inverse distance weight with K ¼ 10 for the number of nearest
neighbors. We evaluated our trained KNNmodel using 15-fold cross validation achieving 94.5% accuracy calculated from the confusion
matrix (see Fig. 8 (b)). In detail we take the 200 examples divide them into 15 equal folds (13 examples per fold), then randomly shuffle
the folds. Then K-1 folds are used for training (15-1 ¼ 14) and the last fold (1) is used for validation. This process is repeated K (15)
times, leaving one different fold for validation each time. After each K-iterationwe calculate the classification accuracy and then take the
average of all iterations for mean classification accuracy (see Fig. 9 (a)). In addition we varied the number of folds and found 15-fold
cross validation to have the highest accuracy (see Fig. 9 (b)). For comparison, we also trained three additional models using 15-fold cross
validation: cubic support vector machine (SVM) achieving 94.5% accuracy, Ensemble Bagged Trees (EBT) achieving 91% accuracy, and
Fine Decision Tree (FDT) achieving 90% accuracy (see Fig. 10). In addition, we varied the number of folds for cross validation for the
KNN: 5-fold achieving 93% accuracy and 10-fold achieving 93.4% accuracy. We also varied the features and found that using both
features resulted in the highest accuracy of 94.5%.
Fig. 9. 15 K-Fold cross validation process (a), and Evaluation of K-Fold cross validation (b).
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Fig. 10. Model comparison using 15-fold cross validation.

Table 1
Training precision and recall.

Gesture Circle 5 Double Tap Finger Click Swipe

Precision 0.9800 0.9400 0.9000 0.9600
Recall 0.9800 0.8668 0.9375 0.9796

E. Miller et al. Smart Health 15 (2020) 100089
4.2. System precision and recall

To evaluate our trained KNN model we analyzed the precision and recall of our confusion matrix Table 1. Precision measures the
proportion of positive identifications of gestures that were actually correct. Recall measures the proportion of actual positive gestures
that were correctly identified. We can see in Table 1 that the precision for circle 5 is 0.98, with 2% classified as swipe, with recall 0.98.
The precision and recall for double tap is 0.94 with recall of 0.8668 with 6% classified as finger click. The precision and recall for finger
click is 0.90 with recall 0.9375with 10% being classified as double tap. The swipe gesture precision is 0.96 and recall is 0.9796, with 2%
of the gestures classified as circle 5 and another 2% classified as double tap. The biggest discrepancies were between the double tap and
finger click gestures as they were similar in movement (two motions) and distance (arm length similar to distance between overhead
light and finger position).
4.3. Detection through material

We also found that our system can reliably classify gestures when covered by material (see Fig. 11 (a)). This is particularly useful for
meeting requirements of sterility, as surgeons can wear the RadSense system underneath their sterile gown. We performed a preliminary
evaluation and trained a new, supervised KNNmodel and removed the finger click gesture. In this experiment, we had one subject wear
the radar on the left side of the chest and then wear a sterile gown over the radar. The subject performed each gesture 10 times each. We
were able to achieve an accuracy of 97%when covered by a sterile gown (see Fig. 11 (b)). The precision and recall are shown in Table 2.

5. Discussion and results

We tested our system in a simulated OR (see Fig. 1). We used a monitor to display CT scan images using the MicroDicom application.
Images were retrieved from the national institute of health (NIH) national biomedical imaging archive (NBIA). The MicroDicom
Fig. 11. The radar worn on the chest of a subject behind a sterile gown (a), and the confusion matrix results when the radar is covered by the sterile
gown (b).
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Table 2
Training precision and recall.

Gesture Circle 5 Double Tap Swipe

Precision 0.9700 1 0.94
Recall 0.9691 1 0.9434

Fig. 12. Accuracy of commands when using real-time system.
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application allows for scrolling, zooming, rotating, panning, measuring, and drawing on a CT scan image. Finally, we mapped our
gesture set to a set of commands to control the CT scan images. We mapped the following gestures to the following commands: swipe to
scrolling up and down, double tap to flip the image left and right with the hand, finger click to flip the image left and right, done while
holding a surgical tool, and circle 5 to switch between commands, up or down for swipe, and left or right for double tap and finger click.

We tested our commands by having five subjects perform the gestures 10 times each then took the average of correctly executed
commands. The system was able to detect gestures and control the CT scan images shown in Fig. 12, but future work is required to
analyze the usability and failure rate of our system. The real-time system was particularly bad at detecting the swipe gestures as we
observed that users swiped to close to the radar, or shifted the radar up and down on the shirt when performing a swipe. Also, the finger
click gesture, often was classified as a double tap, but since they were mapped to the same command users did not notice. This miss-
classification between the finger click and double tap, was not a big issue for users, as the two gestures were used in two different
configurations: one hand interaction (using the hand) or no hands interaction (using the finger). The hold gesture was not explicitly
trained, but rather, any movement below our threshold was assumed to be a hold.

6. Conclusion

In this paper, we presented an end-to-end and unobtrusive system that uses Doppler radar sensing to recognize hand and finger
gestures when either one hand or both hands are busy. Our system permits the following important capabilities: (1) touch-less input for
sterile interaction with connected health applications, (2) hand and finger gesture recognition when either one or both hands are busy
holding tools, extending multitasking capabilities for health professionals, and (3) wearable, mobile, and networked, allowing for
custom configurations. We evaluated or system in a simulated OR, using five subjects, by training a KNN multi-class classifier achieving
94.5% gesture recognition accuracy. We also tested our real-time system, capable of detecting the start and end of a gesture for clas-
sification. We mapped four gestures: double tap, circle, swipe, and finger click to commands to control a CT scan image application. We
found that future work is required to evaluate the usability of our system as well as ways to more accurately process the radar signal in
noisy conditions. To the best of our knowledge, this is the first system to successfully use radar for image interaction in the OR.
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