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ABSTRACT
The exponentially increasing number of Internet-of-Thing (IoT) de-
vices introduces a spectrum crisis in the shared ISM band. However,
it also introduces opportunities for conducting radio frequency
(RF) sensing using pervasively available signals generated by het-
erogeneous IoT devices. In this paper, we explore how to leverage
the ambient wireless traffic that i) generated by uncontrollable
IoT devices and ii sensed by ambient noise floor measurements (a
widely available metric in IoT devices) for human gesture recogni-
tion. Specifically, we introduce our system EAR, which can conduct
fine-grained human gesture recognition using coarse-grained mea-
surements (i.e., noise floor) of ambient RF signals generated from
uncontrollable signal sources. We conducted extensive evaluations
in both residential and academic buildings. Experimental results
show that although EAR uses coarse-grained noise floor measure-
ments to sense the uncontrollable signal sources, the signal sources
can be distinguished with an accuracy up to 99.76%. Moreover, EAR
can recognize fine-grained human gestures with high accuracy
even under extremely low traffic rate (i.e., 4%) from uncontrollable
ambient signal sources.
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1 INTRODUCTION
The number of Internet-of-Things (IoT) devices is exponentially
increasing. It will reach 20 billion by 2020 [31]. These devices will
also generate huge amounts of wireless traffic. Based on the Cisco
Global Cloud Index [31], the data created by these devices will
reach 42.3 ZB (i.e., 4.23×1022 bytes) per month and will be 49 times
higher than total data center traffic by 2019. The huge amount of
data generated by these IoT devices will cause spectrum crisis in
the shared Industrial Scientific Medical (ISM) band.

On the other hand, the ubiquitous wireless traffic generated by
these IoT devices also introduce potential opportunities for conduct-
ing RF sensing (e.g., human gesture recognition). Comparing with
the mature voice command systems (e.g., Alexa and Google Home),
the scenario of RF signal based gesture recognition is much wider.
For example, RF-based system can be used i) in a noisy environment
(e.g., when playing loud music, the voice command system does not
work well); ii) in a quiet environment (such as a baby bedroom); iii)
for disabled people.

237

https://doi.org/10.1145/3274783.3274847
https://doi.org/10.1145/3274783.3274847
https://doi.org/10.1145/3274783.3274847


SenSys ’18, November 4–7, 2018, Shenzhen, China Z. Chi et al.

Human Gesture

Uncontrollable Ambient Signal Source  

IoT Devices That Measure Ambient Noise Floor

Figure 1: By passively listening to the ambient noise floor
from uncontrollable signal sources on IoT devices, EAR rec-
ognizes human gestures without introducing extra wireless
traffic. Since our system does not require RF signal demodu-
lation, the signal sources can be heterogeneous IoT devices.

Different from existing RF sensing approaches that need the des-
ignated and controlled senders explicitly send out the RF signals, we
propose to explore how to leverage the existing ambient RF signals
(i.e., wireless traffic) generated by heterogeneous IoT devices for
human gesture recognition. By doing this, we can avoid introducing
designated wireless traffic for RF sensing. Therefore, our approach
does not introduce extra burden to the overcrowded ISM band and
has zero interference with existing wireless traffic.

Figure 1 shows a potential application of our approach in a
smart home. Multiple IoT devices (e.g., smart light, cell phone, and
thermostats) can seamlessly work together to identify the detailed
gestures of the occupant based on the signal changes of ambient
wireless trafficwhich is emitted by the uncontrollable signal sources
(such as surveillance camera, smart meter, and access point) and
bounced back from the occupant’s body. These devices can then ad-
just the environment based on the occupant’s gestures (e.g., turning
on the light when the occupant is waving his/her hand).

In order to utilize the ambient RF signals for gesture recognition,
we need to address the following three unique challenges:
i) Uncontrollable RF signal sources: Since IoT devices are using
different radios and protocols (e.g., WiFi, ZigBee, and Bluetooth),
they cannot demodulate the wireless traffic generated by differ-
ent radios. Therefore, when an IoT device receives the ambient
RF signals, it is very difficult to tell who sent the signals without
demodulation. Moreover, the number of RF signal sources may be
different during the human gesture recognition. To address these
issues, we propose to use i) complete-linkage clustering for po-
tential source distinguishing and ii) a real-time cluster updating
mechanism for merging observations to efficiently maintain the
source clusters.
ii) Intermittent RF traffics:Most of the wireless devices, such as
wireless access point (AP) and wireless sensor devices, have inter-
mittent RF traffic. However, existing human gesture recognition
approaches require the sender to generate continuous signals. In
order to leverage the ambient RF signals for human gesture recog-
nition, we need to incorporate the wireless signals from different
senders. To address these issues, we propose to use a gesture struc-
ture matrix to decompose observed intermittent RF traffics into

sparse gesture coefficient, and recover the missing RF traffic from
the coefficient.
iii) Asynchronized Measurement: Since IoT devices are using
distributed clocks and different protocols (ZigBee, BLE, WiFi, etc.),
their clocks are not always synchronized. In order to leverage the
ambient RF signals for gesture recognition, we need to coordinate
and synchronize the measured RF signal strengths among multiple
receivers. To address this issue, we propose an algorithm based
on the spacing between reference signals in the environment to
synchronize the measurement for each IoT device without explicit
time synchronization messages.

Our main contributions are as follows:
• To the best of our knowledge, this is the first work that enables the
ambient RF signals from IoT devices for human gesture recognition
without introducing any designated RF sensing traffic.
• This is also the first work that seamlessly combines multiple
pieces of ambient RF signals from multiple uncontrollable senders
and multiple receivers for gesture recognition.
•We have extensively evaluated the system with factors (i.e., inter-
mittent traffic rate and type, the number of uncontrollable sources
and regularly or randomly deployed nodes and synchronization
efficiency) that can potentially affect recognition accuracy. Results
show that: i) the recognition accuracy is higher than 90% even
under an extremely low traffic rate (i.e., 4%) and different traffic
types; and ii) uncontrollable sources can be distinguished with an
accuracy up to 99.76%.
• The design of the signal source distinguishing and intermittent RF
traffic reconstruction modules are generic. It is possible to extend
EAR to be a middleware which “glue” other RF sensing system with
uncontrollable ambient signals.

2 SYSTEM OVERVIEW
EAR system is divided into two parts: i) server side and ii) IoT
devices side. To save energy on individual IoT device, the server
collects data and conducts the main process to recognize human
gesture. Figure 2 shows the overview of our system EAR. At the
server side, there are three steps:
• Distinguishing unknown RF signal sources. To utilize am-
bient RF signal, EAR distinguishes the unknown signal sources
that are characterized by the physical properties of the source and
environment. Specifically, we use complete-linkage clustering to
identify potential sources and distinguish the source cluster by
signal instance similarity among the measurements of different IoT
devices. To efficiently maintain the source clusters in real-time, we
merge saved signal instances by their centroids (see Section 3).
•Reconstructing from intermittent RF traffics. By using a ges-
ture structure matrix, EAR reconstructs a persistent traffic mea-
surement from intermittent RF traffics to capture human motions
in the frequency domain (see Section 4).
•Gesture Recognition. After above processes, a recognition algo-
rithm is proposed for gesture recognition with ambient RF signals
(see Section 5).

To distinguish the signal sources and recognize human gesture,
EAR needs the aligned measurements from distributed IoT devices.
Instead of using explicit time synchronizationmessages, we propose
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Figure 2: System Overview

to passively listen to the ambient RF signals to align the noise floor
measurements on distributed IoT devices by the following approach:
•Asynchronizedmeasurement alignment. EAR aligns the noise
floor measurements by using a folding technique to find the peri-
odical beacon of existing network. To prevent misalignment when
multiple beacons exist and have the same (or integer multiple) pe-
riod(s), we propose to sense and utilize the unique spacing signature
among beacons in a distributed manner (see Section 6).

3 DISTINGUISHING UNCONTROLLABLE RF
SIGNAL SOURCES

EAR utilize the noise floor (NF) measurements to characterize the
human gesture. Since themeasurements can be from different signal
sources, we first discuss why we need to distinguish RF signal
sources. Then we propose the method to distinguish RF signal
sources by using the NF from distributed IoT devices.

3.1 Why we need to distinguish the sources
Due to the widely adopted carrier-sense multiple access (CSMA)
mechanism in wireless communication (e.g., both the WiFi and Zig-
Bee protocols adopt CSMA), different RF senders transmit signals
alternately to avoid a collision. Since the RF transmission rate is
much faster than human gesture, it is possible that two or more
signals present during one gesture.

Figure 3 shows two examples of the same gesture captured by
an IoT device (i.e., receiver). During the gesture motion duration,
there are two signals from different sources. In setting 1 (Figure
3(a)), the uncontrollable signal source A transmits signal in time
duration T1 and source B transmits signal in time duration T2. In
Figure 3(c), the receiver senses the NF from source A and source
B in time duration T1 and T2, respectively. However, in setting 2
(Figure 3(b)), the uncontrollable signal source B transmits in time
duration T1 and source A transmits in time duration T2. And the
received NF is shown in Figure 3(d). If we directly use the collected
NF measurements for gesture recognition without distinguishing
the signal sources, the gesture recognition model obtained by the
data (Figure 3(c)) in setting 1 will not be able to recognize the
gesture when we collected NF in setting 2. Meanwhile, the gesture
models of different sources may not be exactly the same. Therefore,
it is important to distinguish the signal sources for accurate human
gesture recognition.
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Figure 3: NF measurements for a same gesture under two
different settings

n = 100 n = 500 n = 1, 000 n = 2, 000
P(0.6) 1.3e-11% 1.6e-59% 3.9e-119% 3.3e-239%

Table 1: Probability to be recognized with n samples if there
are three ambient signal sources.
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Figure 4: Some IoT devices (i.e., IoT 1) can distinguish signal
sources via NF while the others (i.e., IoT 2) cannot.

Formally, suppose a gesture can be recognized by the features
extracted from NF measurements. By performing the similarity of
matching, NF measurements can be matched to the same gesture
if the signal comes from the same source. If there are k signal
sources in the environment, and the NF during a gesture motion
is composed of n slots that each can be occupied by one source.
With the similarity s (s ∈ (0, 1]), the probability P(s) that the NF
measurements can be matched to the right gesture can be expressed
as follows:

P(s) =
n∑

i=sn

(
n

i

)
(
1
k
)i (

k − 1
k

)n−i (1)

An example in Table 1 shows that when the number of signal
sources is three (i.e.,k = 3). Assuming the gesture can be recognized
correctly if s > 0.6, we observe that the recognition probability is
very low. Thus, we need to distinguish the signal sources.
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Algorithm 1 Continuous Signal Source Distinguishing

Input: S, C = { ⟨C1, l1 ⟩, ..., ⟨Cns , lns ⟩ }
Output: L, C

1: E = PCA(S, k̃ );d = 0
2: C̃ = cluster inд(E)
3: for ⟨C̃i , l̃i ⟩ in C̃ do
4: l̃i = argmax

lj :⟨Cj ,lj ⟩∈C
{
∑
s∈C̃i

1Cj (s)}

5: if l̃i = ∅ then
6: d + +; l̃i = ns + d
7: C = C ∪ {⟨C̃i , l̃i ⟩ }
8: else
9: Cj = Cj ∪ C̃i
10: end if
11: end for
12: for ⟨Ci , li ⟩ ∈ C do
13: repeat
14: s , s ′ = argmin

s ,s′∈Ci

{ | |s − s ′ | | }

15: Ci = Ci \{s , s ′ } ∪ {centroid(s , s ′)}
16: until |Ci | ≤ Ne
17: end for
18: L = label (S, C)

3.2 Continuous signal source distinguishing
Since the goal of EAR is to utilize ambient RF signal for recognizing
human gesture, the received signal may come from heterogeneous
IoT devices. e.g., a ZigBee receiver picks up WiFi signals. Thus,
it is possible that the IoT receiver is not able to demodulate the
received signal. In other words, the receiver cannot distinguish
the signal source by extracting identification (such as node ID or
source address) from the demodulated packet. Therefore, how to
distinguish RF signal sources by using the widely available noise
floor (NF) measurements 1 is challenging.

We conducted an experiment with the setup shown in Figure
4(a), where two IoT nodes are passively recording the NF while two
devices (i.e., cellphone and laptop) are performing normal Internet
access (e.g., watching online videos). The recorded NF readings for
IoT 1 and IoT 2 are shown in Figure 4(b) and Figure 4(c), respectively.
From figures 4(b), we find that it is possible to distinguish by the
measurements from IoT 1 because IoT 1 is at the boundary of the
three senders. However, it is very difficult to differentiate the signal
sources by IoT 2’s measurements (shown in Figure 4(c)) because it
is at the center of the three senders.

Given the signal source location is unknown to IoT receivers,
we propose to incorporate the NF measurements from multiple IoT
devices to distinguish the RF signal sources.

To distinguish the signal source, we design a Continuous Signal
Source Distinguishing (CSSD) (Algorithm 1). CSSD distinguishes the
sources based on the similarity among the NF measurements across
different IoT receivers. This algorithm has a time complexity of
O(n2) where n is the number of samples. In the evaluation (see
Section 7.4), we show that this algorithm can achieve an accuracy
up to 99.76% for source distinguishing.

We first introduce the input and output of the algorithm then
specify the process of the algorithm.
• Inputs: The input S is an k by i array of received NF measure-
ments:
1Note that sophisticated signal features may not be available on energy constrained
IoT devices such as ZigBee.
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Figure 5: Source Clustering. The clustering method in CSSD
algorithm is effective to separate the signal sources.

S =


s11 . . . s1i
...

. . .
...

sk1 . . . ski

 (2)

where each element ski is the measurement at time i from device
k . Thus, each column s(i) = [s1i , ..., ski ]

T is the measurements at
across all devices at a specific time 2. The second input C includes
n clusters. Each pair ⟨Ci , li ⟩ depicts a signal source li and its as-
sociated NF array set Ci = {s1, ..., s |Ci |} that characterizes the
observation of physical property for the signal sources.
• Outputs: L = {l1, ..., lw } is the label of the signal sources for
S. CSSD keeps updating C because the clustering results of the
same source may be different over time due to human influence or
environment change.
• Process: To i) prevent the “curse of dimensionality” when the
number of IoTs increases and ii) retain the most important variance
caused by human motion, fast PCA is applied (Line 1). Then, each
column s(i) is transformed to E(i) = [e1i , e2i , ..., ek̃ i ]

T .
Since we do not make an assumption on the number of potential

signal sources and CSSD targets at continuous source distinguish-
ing that no hard threshold should be set, we use complete-linkage
clustering (Line 2) to continuously identify potential source clusters.
This algorithm does not require an indication of the number of
clusters and has a low time complexity of O(n2) where n is the
number of elements. The key idea of this clustering method is to
first assume each element to be its own cluster, then merge pairs
of clusters until no two clusters can be merged anymore. Since
the spacing between different clusters is large, we break down the
clustering into ñ clusters based on the max common stem height
in its dendrogram to make sure that ñ is larger than the number
of sources identified ns . Figure 5 shows a result from the environ-
ments with 2 or 4 sources. We can clearly observe the space among
different sources.

So far, we have separated the sources into multiple clusters,
but we still do not know which source the cluster belongs. Thus,
we match the real-time clusters C̃ with the saved cluster set C
and identify the source as the one by the max number of nearest
signal instances (Lines 3-11). However, until now we still have two
challenges to address: i) the matching process between C̃ and C

can take too much time when |Cj | becomes large; ii) the clustering
results of the same source may be different over time due to human
influence or environment changes. To address these two challenges,

2We assume the measurements from different IoT devices are aligned in terms of time
and we will introduce how to align them in Section 6.
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we dynamically merge elements in previously saved clusters when
the elements in saved clusters reach a maximum number Ne and
add the newly identified clusters into the saved clusters (Lines 12-
17). We can do this because of the following two reasons: i) the
fast PC extracts the main components caused by different signal
sources rather than variation caused by human influence. ii) the
use of the complete-linkage clustering method updates the clusters
in real-time even when human movements present. The merging
process is as follows: i) find two elements with the shortest distance
in the saved cluster (Line 14); ii) replace them by their centroid
(Line 15); iii) merging process ends when the element number in
the saved and new identified clusters reaches Ne (Line 16).

Since the CSSD algorithm does not require demodulation and
based on noise floor measurements, it works with heterogeneous
signal sources (e.g., WiFi or ZigBee devices) as long as the signal
has a constant transmission power. The noisy signals (such as from
a microwave oven or a moving source) will be filtered out because
it does not belong to a certain cluster over time.

4 INTERMITTENT TRAFFIC
RECONSTRUCTION

In Section 3, we introduced how to distinguish the signal sources. In
this section, we propose to deal with the intermittent traffic sent out
by IoT devices. Since most of the wireless IoT devices have bursts of
intermittent RF traffic, however, the existing human gesture recog-
nition requires a continuous signal measurements to characterize
the human motion. To address this challenge, we reconstruct a
persistent measurement based on the sparsely observation of NF,
whose variance is caused by gesture motion. The key feature we
use is that the variance has an underlying structure that can be
captured by a proper gesture structure matrix. The advantage of
our algorithm includes: i) effectively recovering detail information
of gesture motions from intermittent traffic; ii) performing gesture
recognition even the intermittent traffic rate is extremely low. Our
evaluation shows that the gesture recognition accuracy is high even
under extremely low traffic rate 0.04 (detailed in Section 7.4).

Underlying structure: An NF measurements stream, which cap-
tures gesture motion, can be decomposed by a gesture structure matrix
into a sparse gesture coefficient vector.

Figure 6(a) shows an example of how the underlying structure
is used. For an ideal NF stream y (i.e., an N × 1 column vector), a
proper N × N gesture structure matrix M can decompose it into
a sparse gesture coefficient vector x (i.e., an N × 1 column vector)
in RN . In this example, N = 8. After decomposition, x is 2-sparse
that only the 1st and the 6th coefficient has significant value while
other values are close to zero.
Reconstruction: Even if only partial NF measurements are obtained,
the sparse gesture coefficient vector can still be estimated by the gesture
structure matrix and used to reconstruct the missing NF values.

In figure 6(b), the obtained NF measurements stream ỹ is part
of the ideal NF stream y, where only K = 4 samples out of 8 are
obtained. Thus, thematrixM′ (corresponding to the obtained values
ỹ) from M is used to estimate x̂ which is not full row-rank:

ỹ = M′x̂ (3)

Equation 3 is an under-determined linear equation since the
number of equations K = 4 is smaller than the number of variables
N = 8. We model it as a minimization problem:

min
x̂∈RN

| |x̂| |1 s .t . ỹ = M′x̂ (4)

Because the ideal gesture coefficient x is expected to be sparse,
this is a l1 norm minimization problem that can be easily solved
using linear programming (LP). After solving the minimization
problem, the estimated gesture coefficient x̂ is also 2-sparse and
approximates x well.

Next, we can reconstruct the recovered NF stream ŷ by solving
the following equation:

ŷ = M x̂ (5)
The reconstruct values are obtained as the red boxes shown in
Figure 6(c). Figure 6(d) shows that the reconstructed NF values
have a high approximation to the ideal measurements.
Gesture structure matrix: Selecting M is non-trivial, its corre-
sponding inverse must be sufficient to make the gesture coefficient
x a sparse vector. An ideal solution is to obtain M from ideal NF
streams that captured human gesture motions. However, this will
introduce extra efforts and the learnt structure matrix might not
be universally applicable. Instead, we propose to use a matrix that
has potential for gesture recognition purposes. Since human move-
ments induce several high peaks in frequency domain, which were
also mentioned by previous researchers ([33],[11]), we select a struc-
ture matrix related to frequency transform. After exploration, the
matrix we select was previous used for compression, discrete cosine
transform (DCT) matrix:

M(i , j) =


1√
N

i = 0, 0 ≤ j ≤ N − 1√
2
N cos i ·(2j+1)π2N 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1

(6)

We compare our reconstruction method with an autoregressive
model. Figure 7(a) shows the obtained NF measurements with a
0.2 intermittent traffic rate. Figure 7(b) and 7(c) show the original
signal and the reconstructed signals by using an autoregressive
model and our method, respectively. By visually comparing the
results, we observe our technique provides much more details than
the autoregressive model even when the traffic rate is only 0.2.
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Figure 7: Signal Reconstruction

In the evaluation (Section 7), we extensively evaluate how the
reconstructed data impacts the gesture recognition accuracy on
different traffic rate.

5 GESTURE RECOGNITION
After the processes of signal source distinguishing and intermittent
traffic reconstruction, we propose an algorithm to conduct gesture
recognition by using ambient RF signals. Different from previous RF
based recognition technique, the recognition algorithm in EARmust
support dynamic changes of IoT devices’ number which includes
the number of signal sources and the number of IoT receivers.

5.1 Gesture Detection
The first step of gesture recognition is to detect the start and end
of a gesture (i.e., the boundary of NF measurements). Based on
empirical analysis, we find the mean of second principal compo-
nent E(h2) after fast PCA (see Section 3) is stable when no hu-
man motion presents. Whereas in the presence of human gesture,
E(h2) shows large variance. Figure 8 shows an example of the E(h2)
changes while three different gestures (i.e., “Kick”, “Wave”, and
“Pull”) present. We can observe the difference of the amplitude
between human gesture not presents and presents. To utilize the
mean of second principal component E(h2) for gesture detection,
we calculate the approximate entropy of E(h2) over time. Approxi-
mate entropy is a useful technique that quantifies the correlation
of fluctuations over time. There are three steps to calculate the
approximate entropy AE(h2): 1) we form a sequence of vectors
x(1), . . . , x(N −m+1), where x(i) = [h2(i), . . . ,h2(i +m−1)]; 2) we
construct Cmi (r ), the probability of x(j) such that dis[x(i), x(j)] ≤ r
(where dis[x(i), x(j)]) is the longest distance between any two ele-
ments in these two vectors; 3) approximate entropy AE(h2) can be
calculated as follows:

AE(h2) = Ωm (r ) − Ωm+1(r ) (7)

where Ωm (r ) = (N −m+1)−1
∑N−m+1
i=1 log(Cmi (r )),m and r are two

parameters which depend on the gesture duration and sampling
rate. The larger them and r values, the false positive error is lower
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and the false negative is higher because the approximate entropy is
calculated with a larger window size and higher similarity criterion.
For gesture detection, the purpose is to detect all the potential ges-
tures (lower false negative is better).We empirically choosem = 50
and r = 3 for best results. To detect the gesture, we first train the
threshold based on the approximate entropy of the second principal
component AE(h2) for the period with and without activities. Dur-
ing the testing, when AE(h2) is detected higher than the threshold,
we set that time as the start of a gesture. When AE(h2) is lower
than the threshold, we determine that time as the end of a gesture.

5.2 Filtering
After bouncing back from human body, low frequency components
are introduced to the RF signal by the body movement [11, 33]. To
accurately recognize the human gesture, a Low-Pass Filter (LPF)
with steep roll-off is applied to extract the low frequency parts and
remove other noises. Moreover, we want to reduce the ripples in
the passband in case that they twist the frequency components
caused by weak gesture. A second order low pass filter with a
cutoff frequency fc = 50Hz and a 40 dB of stopband attenuation
provides good performance in our system. The parameters are
chosen empirically. The transfer function is as follows:

H (z) =
0.015 − 0.006z−1 + 0.015z−2

1 − 1.771z−1 + 0.795z−2
(8)

Figure 9 shows a snapshot of reconstructed NF values (blue
colored curve) and the values after filtering (red colored curve).
We can observe that this LPF keeps the low frequency trend but
removes the high frequency noises.

5.3 Recognition
Compared to existing works, EAR has the following three chal-
lenges: i) within an individual gesture, the NF measurements may
come from different sources; ii) the number of RF signal sources
dynamically changes over time; iii) the NF measurements come
from different receivers that need to be fused. To address these
challenges, the design of recognition algorithm should consider the
following:
• The algorithm should support varying-dimension vectors. Because
the NF matrix has a varying dimension (i.e., the number of signal
sources and receivers changes dynamically. For example, the IoT
device may lose power.), the models’ dimension cannot be fixed.
• Different sources cannot use one collaborative model. Namely, the
model for the measurements from one signal source cannot be used
for the measurements from another source.
• Low time complexity for updating the model. Since the number of
sources and IoT devices can be large, if the algorithm requires a lot
of time for updating, it decreases the capability for EAR to adapt to
new situations quickly.
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With these considerations, we select Markov chain models as
the basic algorithm building block because of its balance between
simplicity and performance in our system. Since the impact of dif-
ferent sources and activities on the NF measurements is varying,
it is important to assign different weights for different models to
optimize the overall recognition accuracy. Therefore, we first intro-
duce our proposed weight optimization methods for multiple signal
sources and receivers. Then we present the detailed recognition
steps and time complexity.
Weight optimization. Suppose that there arem sources and n re-
ceivers, we assign weightw(j,k) for different sources and receivers.
The key idea of weight optimization is to learn the optimal weight
selection based on the training dataset, then the weight will be
updated based on the variances of the NF samples during real-time
recognition. We formulate the weight optimization problem as a
minimization problem:

min
∑

1χi ( χ̂i )

s.t. 0 ≤ w (j , k ) ≤ 1 ∀j ∈ [1,m], k ∈ [1, n] (a)
m∑
j=1

n∑
k=1

w (j , k ) = 1 (b)

where 1(·) is the indicator function, χi and χ̂i are the ground truth
and recognition result of each sample, respectively. If χ̂i = χi ,
1χi (χ̂i ) = 0; otherwise 1χi (χ̂i ) = 1. The two constraints ensure
that the weight is between 0 and 1, and the sum of all the weights is
1. Because the two constraints and the object function are all linear
functions, the problem can be solved by linear programming. With
the optimal weight selection from training procedure, we update
the weight based on the variances of the NF measurements during
the testing. If the variance from one source is low, it means that the
NF measurements are rarely affected. Therefore, we will decrease
the weight when the variance is low or increase the weight when
the variance is high.
Recognition steps: Figure 10 shows the six recognition steps: 1)
we calculate the frequency component vectors of the reconstructed
NF values by using Short Time Fourier Transform (STFT); 2) we
apply k-means to cluster frequency component vectors of all the
samples in the training dataset; 3) theMarkov state transitionmatrix
of each gesture is updated based on the clustered state transitions
for all the samples in the training dataset; 4) we apply gesture
recognition with the samples in the training dataset to update the
weights for different sources and receivers; 5) the c cluster centroids
learned from the training process are applied to label the samples in
the testing dataset with the shortest Euclidean distance; 6) finally,
we calculate the log-likelihood probabilities of each sample for each
gesture, and classify the sample as the gesture with aggregated
maximum log-likelihood probability from all pairs of source and
receiver. By doing this, the dynamically varying dimension does
not affect the recognition process.
Time complexity: Assuming the max length of each sample is
l . To update the models from a dataset with q samples for each
source and device pair requires a time complexity ofO(c ·mnq · l · t)
and O(c ·mnq · l) for finding c clusters in t iterations and updating
the Markov chain models, respectively. Since the updating of each
Markov state transition matrix can be conducted in parallel, and
the clusters can be created once, the final updating time complexity
is O(clq).
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Figure 10: Recognition Steps
6 ASYNCHRONIZED MEASUREMENT

ALIGNMENT
In Section 3.2, we proposed the method to distinguish signal sources
by the NF measurements from multiple IoT receivers. In order to
utilize the NFmeasurements from different IoT receivers, we need to
make sure that each data point from distributed receiver is aligned.
Since one design goal of EAR is to avoid introducing extra traffic,
instead of using explicitly time synchronization protocols (such
as TPSN[12] or FTSP[24]), we propose a measurement alignment
technique which only relies on the NF measurement of ambient RF
signals.
6.1 Effectiveness of Distributed NF
Different devices have different local times, the timestamps of NF
measurements that capture the same motion are not aligned. Figure
11 shows an example where one ZigBee is sending packages while
two sensing devices Rx1 and Rx2measure NF. AlthoughNF captures
the same event, it is not aligned due to a local time difference. In
order to align NF, we have:
Lemma 1: NF measurements can be synchronized if the line of sight
distance between any device and ambient unknown source pair has
d < min{c(1/f −τ ), r }. c is the RF signal speed, f is the NF sampling
rate, τ is the multipath delay, and r is the effective communication
range of the ambient source.
Proof. Suppose there are two devices in the effective communication
range of a source. After the source sends out an RF signal, the
maximum multipath propagation distance to each device is d(1)max
and d(2)max (assuming that d(1)max ≥ d

(2)
max ). In order for the ambient

signal to arrive at both devices in the same sampling period while
carrying multipath effect that captures human motion, we have
(d

(1)
max −d

(2)
max )/c < 1/f . This formula can be satisfied if d(1)max /c <

1/f . This formula can be further expressed as d1/c + τ1 < 1/f ,
where τ1 = (d

(1)
max − d1)/c . τ1 happens to be the multipath time (or

the signal pulse receiving duration) for device 1. Moreover, if this
device is outside of the ambient source’s communication range r , it
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Figure 11: NF captured at the same local time on two sensing
devices. Although NF is captured at the same time by two
sensing devices Rx1 and Rx2, they are not aligned due to a
local time difference of 0.3ms.
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Figure 12: The procedure of folding operation

cannot pick up any signal. Therefore, since it applies to any pair of
devices, we have lemma 1 proved. □

This lemma assures that if NF is aligned across all the IoT devices,
it effectively captures and timestamps the same event on all devices.

6.2 Basic Aligning Approach
One naive solution to align the NF measurements across multi-
ple IoT devices is to conduct time synchronization at each device
by sending time synchronization packets with a certain time syn-
chronization protocol (e.g., TPSN[12] or FTSP[24]). However, this
introduces too much communication overhead and may interfere
with the existing traffic.

Instead of actively synchronize the IoT devices, we propose a
novel approach by passively searching the reference signal from
ambient sources for data alignment. The key idea is to search a
periodical reference signal which can be sensed by all the devices
and use this reference signal as a starting point to align the NF mea-
surements from different devices. For example, the beacon packets
(which are sent for neighbor discovering purposes) from a WiFi
AP are excellent reference signals. Since the beacon packets are
sent periodically (e.g., every 100ms) and basically never change, the
period parameter in IoT devices can be either manually set when
deploying the system, or obtained by cross-technology commu-
nication technique (such as [9, 10, 19, 34]) passively sensed and
calculated (by using the searching algorithm proposed in [36]) for
time synchronization without explicitly sending packets. However,
when the traffic in the environment is high, capturing them is a
non-trivial problem. To solve this problem, we adopt the folding ap-
proach originally proposed to search for weak signals in the noisy
radio[8, 13, 23].

To identify the location of beacon packets, we denote the sensed
NF measurements as NF (t). When these NF readings are sliced
with time period P , they form a matrix NF ′(i, j), where i ∈ [1, P],
j = t/P . Then, we build the histogram h(i) of NF ′(i, j):

h(i) =

j∑
n=1

NF ′(i,n) (9)

Based on the maximum value ofh(i), we can identify the location
of beacon i = argmax

k
(h(k)), because only the periodical beacon’s

NF measurements are aggregated together after folding. All devices
thus can be synchronized.

Figure 12 shows the procedure of the folding operation used
to locate the beacon packets. A series of NF measurements (i.e.,
NF (1 − 300)) sensed by a ZigBee node is shown in Figure 12(a). By

looking at the figure, it is hard to find the beacon packets because
there are many data and control packets being sent from unknown
signal sources along with the beacon packets. Since beacon periods
can be easily obtained. In this example, a WiFi beacon with a time
period of P = 100ms can be obtained by the configuration of WiFi
AP. Thus, we slice the 300ms NF series into three pieces (three
different colors in Figure 12(a)) and sum them as shown in Figure
12(b). The result of the summed NF measurements is shown in
Figure 12(c) and we can clearly identify the beacon’s location.

6.3 Advanced Aligning Approach
The folding technique is effective to align the IoT devices by only
passively sense the NF even there are multiple beacons exist. How-
ever, if multiple beacons have the same or integer multiple beacon
period, misalignment will occur.

For example, there are three signal sourcesTx1,Tx2 andTx3 that
transmit beacon B1, B2, and B3 at periods p1 = 1.6,p2 = 1.6 and
p3 = 3.2, respectively. Figure 13(a) shows the folding sums from
two IoT receivers (i.e., Rx1 and Rx2) with P = 1.6. Because Rx1
and Rx2 are at different location that the received signal strengths
are different, the maximum folding sums for Rx1 and Rx2 locates
beacon B1 and B2, respectively. Apparently, the folding technique
yields a misalignment.

In order to overcome this challenge, we leverage the intuition
that although the magnitude of the beacon varies when the com-
munication distance between signal source and IoT receivers are
different, the spacing between beacons are unique and can be used
as a signature for alignment.

Specifically, we propose a distributed alignment pilot searching
(DAPS) algorithm (Algorithm 2) with time complexity of O(nloдn)
to converge the IoT devices to the same beacon (which is named
pilot).

The input of this algorithm is the spacing sequence s = {s1, s2, ..., sn }
obtained by the folding technique. Each sn is the space between
two beacons (e.g., the s1, s2, and s3 shown in Figure 13(a)). The
output i is the index of the pilot. The process is as follow:
Step 1: Identify Minimal leading sequence: we find the mini-
mal leading sequence from s (Line 1). If |I| is 1, the algorithm returns
with this location (Lines 2-4). Take Rx1 in Figure 13(b) as an ex-
ample, since the minimal spacing are s2 = 0.3 and s3 = 0.3, the
corresponding set is I = {2, 3}.
Step 2: Pilot locating. We calculate the max non-decreasing sub-
sequence length of all minimal leading sequences. Then, the pilot is
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Figure 13: Distributed Aligning based on the beacon spacing signature between passive IoT receivers.

Algorithm 2 Distributed Alignment Pilot Searching
Input: s = {s1, s2, ..., sn }
Output: i
1: I= argmini {si }
2: if |I | = 1 then
3: return I1
4: end if
5: for k ∈ 1 : |I | do
6: Left circular shift s by Ik − Ik−1 to make sIk the first element
7: Calculate L∗(k ) by solving Eq. 10 with DP
8: end for
9: i = argmaxk L∗(k )

located by the one with max value (Lines 5-8). If multiple minimal
leading sequences are available, we always chose the first one.

Take Rx1 as an example in Figure 13(b). There are two valid
sequences as v1=[0.3, 0.3, 0.6] starting with s2, and v2=[0.3 0.6 0.3]
starting with s3. In Figure 13(c), the max non-increasing subse-
quence length of v1 is 3 with the sequence as d1=[0.3, 0.3, 0.6]. That
of v2 is 2 with a sequence as d2=[0.3, 0.6]. Therefore, by finding the
index that leads to the max length among the alternatives, we can
locate the pilot as s2. The purpose of finding max non-decreasing
subsequence is to let the algorithm work even with repetitive spac-
ing sequence like [0.3 0.6 0.3] and [0.3, 0.3, 0.6] that rarely happens
in real world settings.

To efficiently find the max non-decreasing subsequence length
for a sequence, s, Dynamic Programming (DP) is used to efficiently
solve the problem as:

l(i) =

{
1 +max(l(j)), i f sj ≤ si , 1 < j < i

1, i f no such j exists
(10)

where l(i) denotes the max length ending at index i . Then the max
length of shifting sIk to the first element L∗(k) =max(l). Then the
pilot can be identified as argmaxk L∗(k), where k ∈ I. Since the
minimal beacon spacing is a small constant, the time complexity is
O(nloдn).

After running the algorithm, Rx1 can be correctly aligned to the
pilot from B2 as shown in Figure 13(d). Meanwhile, Rx2 can also
use DAPS to converge to the same pilot B2 as illustrated in Figure
13(d).

7 PERFORMANCE EVALUATION
In this section, we first introduce the implementation and experi-
mental setup. Then we show the overall gesture recognition results
as well as the impact of different parameters. In addition, we testify
that EAR works well under various traffic rates and performance

contribution ofmajor EAR components. Finally, we evaluate a group
of gross activities to show the generality of EAR.

7.1 Implementation
The implementation of EAR is divided into two parts:
Server: the signal source distinguishing (introduced in Section
3), intermittent RF traffic reconstruction (introduced in Section
4), and gesture recognition (introduced in Section 5) modules are
implemented on a DELL XPS 9550 laptop.
IoT devices: the data acquisition and alignment (introduced in
Section 6) is implemented on distributed ZigBee (TelosB nodes [1])
and WiFi devices (Atheros AR5xx WiFi card).

7.2 Experimental Setup
To find out how ambient RF signals work with EAR, we deployed
EAR in two different scenarios as follows:
A meeting room: The first scenario is a meeting room (measured
23 feet in length and 8 feet inwidth) on the third floor of an academic
building. As shown in Figure 14, there is a conference table and 14
chairs in the meeting room as well as a large flat screen on the wall.
we deployed two laptops and two smartphones as signal sources
and four EAR receivers as well.
An apartment: The second scenario is used to test with multiple
heterogeneous wireless devices in an apartment. As shown in Fig-
ure 15, the apartment is measured 16 feet in length, 13 feet in width,
and 7 feet in height. There is regular furniture (such as drywall, bed,
table, counter, etc.) in the apartment. We deployed a WiFi camera,
a WiFi AP, a laptop, a wireless camera, a smartphone, a smart TV,
a desktop computer, and a robot vacuum (wireless communication
enabled). In the meantime, we also deployed ZigBee devices, in-
cluding a smart meter, a smart thermostat, and smart lights. These
devices communicate with each other to create ambient RF traffics
on 2.4 GHz (WiFi Channel 11 and overlapped ZigBee channels).

We have 10 volunteers to perform gesture for the evaluation of
EAR. The heights of the volunteers range from 168cm to 190cm.
We collected 11250 samples in total. The experiment is recorded by
a camera to obtain ground truth. We have obtained IRB to conduct
the above procedures. To avoid overfitting, a 10-fold cross validation
is used.

7.3 Recognition Results
We first show the gesture recognition accuracy in this section. A
broad range of gestures is selected to test the system. The gesture
type and the corresponding notations are listed in Table 2. Figure
16 shows the results in an academic building. The overall accuracy
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Gesture Notation Gesture Notation
Slight Kick KK Pull PL
Wave WE Swipe SP
Punch PN Raise Arms RA
Circle CE Stand Still ST
Push PH

Table 2: Gesture and notation
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Figure 16: Confusion matrix of gestures recognition in the
meeting room. The overall accuracy is 92.2%.

is 92.2%. For each individual gesture, the highest (“Stand Still”) can
achieve up to 100%. Figure 17 shows the confusion matrix of the
recognition results in the apartment. The highest accuracy is “Stand
Still”, which achieves 100% accuracy. The lowest gesture is “Punch”
which can still achieve an average of 83.2% accuracy. The possible
reason is that “Punch” is too similar to gestures “Wave” and “Pull”.
Overall, the recognition accuracy achieves 92.63% across all types of
gestures. The reason that the recognition accuracy in the apartment
is slightly higher than the meeting room is that the signal sources
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Figure 17: Confusion matrix of gestures recognition in the
apartment. The overall accuracy is 92.63%.
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Figure 19: Impact of the number of signal sources.

in the apartment is more than those in the meeting room. We will
further evaluate the impact of signal sources’ number in Section
7.4.

The reason EAR can achieve such a high accuracy is because
that: i) EAR can accurately distinguish the ambient signal source;
ii) EAR can reconstruct the intermittent RF traffic; and iii) EAR can
detect the start and end of every single gesture. We will evaluate
these individual modules in following sections.

7.4 Module Evaluation
In this section, we evaluate the performance of different modules
as introduced in Section 3, 4, 5, and 6.
Signal Source Distinguishing:We first evaluate the signal source
distinguishing accuracy. Figure 18 shows that when there are only
two signal sources, EAR can achieve at least 90% accuracy to identify
them even with only one receiver. When the number of receivers is
greater than three, EAR can easily distinguish all sources with an
accuracy up to 99.76% (mean = 99.20%) regardless whether of the
number of sources. Overall, EAR can distinguish different sources
by cooperating the IoT receivers.

Furthermore, we evaluate how the number of signal sources and
IoT receivers impact the overall gesture recognition performance
in terms of recognition accuracy. As shown in Figure 19, with
more ambient signal sources and receivers, the overall accuracy
increases up to 96.14%. The results illustrate that EAR not only
effectively distinguishes the signal source, but also utilizes the
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racy up to 99.6%.

data from different signal sources and IoT receivers to increase the
recognition performance.
Intermittent RF Traffic Reconstruction: The traffic type and
rate in the air will affect the recognition performance. To mitigate
the impact of traffic rate, we designed the intermittent RF traffic
reconstruction module (introduced in Section 4). In Figure 20(a),
we evaluate how this module impact the recognition performance
when the traffic is under uniform and Poisson distribution with the
traffic rate changes from 0.2 to 0.02. To conduct the experiments,
we tune the traffic rate by controlling the generated traffic (by
using iPerf tool) on the laptop. We used an USRP to measure the
traffic rates (defined as channel busy time divided by total time) in
the air. The result shows the overall gesture recognition accuracy
is higher than 90.0% when the traffic rate is larger than 0.04 for
both of the two types of traffic distribution. We further evaluated
the system under three types of real network applications: i) web
browsing (WB); ii) online gaming (OG); and iii) video streaming
(VS). The result in Figure 20(b) shows that all of them can achieve
the recognition accuracy higher than 90%.
Gesture Detection: To evaluate the gesture detection accuracy ,
we utilize the data from different numbers of IoT receivers in the
environment. The overall detection accuracy of ten participants is
shown in Figure 21. We observe that EAR has rather robust perfor-
mance over different participants. The detection accuracy increases
with the number of receivers for most of the participants. When
the receiver number is larger than four, the overall detection accu-
racy reaches up to 99.6%. The reason is that with more dimensions
(each dimension is the data stream from one receiver), the PCA
(introduced in Section 5) provides larger variance between absence
and presence of human motion. Thus, the accuracy increases as the
number of IoT receivers increases.
AsynchronizedMeasurementsAlignment:Weevaluate the time
efficiency of asynchronized measurement alignment (Section 6) in

Figure 22: Alignment efficiency: EAR can finish the align-
ment within 7 beacon periods (corresponding to 700ms)
even in the worst case (TR=0.8).

Motion Notation Motion Notation
Dodge DE Deep Squat DS
Jump JP Raise Dumbbell RD
Walk WK Sit Down SI
Run RN Stand Still ST
Table 3: Gross Human Motion and Notation
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Figure 23: Confusion matrix of gross human motion. The
overall recognition accuracy is 96.15%.

this section. Intuitively, with higher traffic rate, the alignment ap-
proach proposed in Section 6 is harder because the folding sum
of beacons stand out. Figure 22 shows the probability distribution
of successful alignment under different traffic rate (TR). Overall,
the NF measurements from distributed IoT receivers can be syn-
chronized with a median of 3 beacon periods (corresponding to
300ms) . Even though the number of beacons required to align the
measurement increases with the increasing ofTR, at most 7 beacon
periods (corresponding to 700ms) are required.

7.5 Gross Human Motion
To show the generality of EAR, we also evaluated a group of gross
human motion (i.e., movement and coordination of the arms, legs,
and other large body parts). The motion types and corresponding
notations are shown in Table 3. From the results in Figure 23, we
can observe that the recognition accuracies for all the gross motions
are higher than 90%. The overall accuracy is 96.15% which is slightly
higher than gesture recognition. The reason is that the gross motion
makes more reflection of the RF signals.
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8 RELATEDWORK
Gesture recognition has lots of potential applications (e.g., smart
home, gaming, and remote control). Traditional approaches using
cameras may reveal private information [6]. The mature voice
command systems (e.g., Alexa and Google Home) are limited in
some scenarios such as i) in a noisy environment (e.g., when playing
loud music, the voice command system does not work well); ii) in
a quiet environment (such as a baby bedroom); iii) for disabled
people. Researchers have developed many wearable device systems
to recognize human activities [17, 27]. In addition, some researchers
have utilized the wearable devices for human activity recognition
to provide real-time authenticating service [18, 22]. On the other
hand, there are a lot of challenges (e.g., energy efficiency and users’
comfort) before making them widely adopted. To overcome these
issues, lots of device-free human gesture recognition systems have
been proposed by utilizing wireless signals. For example, [26] uses
a microphone array, passive infra-red sensors, and illumination
sensors to detect activities in a single office room. AALO [15] uses
in-home sensors to recognize human activities from room to room.
Recently, researchers have proposed to use radio frequency (RF)
signals for human gesture recognition. Based on the features of the
RF signals, these RF based recognition systems can be divided into
three categories:
RSS-based. By demodulating and decoding the received packets,
the receiver monitors the change of Received signal strength (RSS)
from a specific sender caused by human movement. Harmony [11]
achieves up to 90% activity recognition accuracy . As presented
in [3, 29, 30], researchers also utilize RSS to recognize gestures. In
addition, RSS can be utilized to monitor respiration [2, 16].
CSI-based. Compared with the RSS-based approach, Channel state
information (CSI) is a fine-grained measurement and implemented
in some specific wireless communication systems (e.g., WiFi). The
receiver extracts the CSI information from the received signal to
conduct recognition. By leveraging CSI, the recognition accuracy
is higher than RSS-based system [33, 35]. Wisture [14] utilizes only
WiFi beacons to recognize gesture on a smartphone. Moreover, CSI
information is used to hear humans talk [32], recognize keystrokes
[7], and obtain gait information [20, 21].
Specific hardware-based. Researchers have also developed spe-
cific hardware to recognize activities and gestures [4]. WiSee uses
USRP to extract Doppler shift from WiFi signals to perform gesture
recognition. By using a large size FFT and two antennas system,
Mudra [38] increases the frequency resolution to extract the subtle
changes caused by finger. To utilize signals from different WiFi
sources, Mudra decodes the WiFi packet to distinguish the incom-
ing signals. By using some specific antenna, it is even achievable to
monitor human breathing and heart rate [5]. Some designated RFID
sensors can also be utilized to recognize human activities [25] and
gestures [28]. Aegis [37] is proposed to recognize human activities
while preventing privacy leaking to the adversary.

Different from the existing work, by sensing the noise floor, our
work is able to utilize ambient uncontrollable RF signal sources
from heterogeneous IoT devices for gesture recognition without
generating designated sensing traffic. EAR addresses three unique
challenges that arise from this setting, including i) how to recognize
and distinguish signal sources from different IoT devices without

demodulating and decoding the packets by using the noise floor
measurements from low-end IoT devices; ii) how to mitigate the
impact of extremely low traffic rate; and iii) how to align the mea-
surements from different receivers without explicitly sending time
synchronization messages. Penitentially, EAR can be developed to
be a middleware which bridges the input of ambient uncontrollable
RF signal sources and existing RF sensing systems.

9 DISCUSSION
9.1 Developing EAR to Middleware
The most important contribution of EAR is utilizing uncontrollable
ambient signals for human gesture recognition and the most im-
portant designs are distinguishing uncontrollable RF signal sources
(Section 3) and intermittent traffic reconstruction (Section 4). Since
the design of these two parts are generic that i) the design has no
limit on the input of signal sources’ number and receivers’ number
and ii) the design does not assume the purpose of the output signals,
it is possible to plug in EAR between existing RF sensing system
and the data source. As long as the RF sensing system is built upon
signal strength measurements, EAR can help the system to combat
ambient sources and multiple sources.

9.2 Negligible Traffic Introduced
EAR is designed to sense human gesture without introducing des-
ignated RF sensing traffic. To collect the data on distributed IoT
receiver, the introduced traffic is negligible because of the follow-
ing three aspects: i) EAR works with as little as two receivers
which means only the data on one device needs to be transmit-
ted to the other; ii) the volume of noise floor measurements is very
tiny (only 8 bits on a time point while CSI is 64bits*2(complex
number)*30(groups)*9(3 × 3 MIMO antennas)) that can be easily
piggybacked on existing traffic; and iii) EAR can also be deployed
on existing wire connected platform such as desktop because it
uses widely available noise floor measurements.

10 CONCLUSION
This paper presents EAR, a system that leverages existing ambi-
ent RF signal from uncontrollable signal sources for high accurate
gesture recognition. EAR achieves this without introducing any
extra RF traffics to the IoT infrastructure. Therefore, EAR meets
the pressing need for spectrum efficiency in the era of ever increas-
ing number of IoT devices while enabling high accurate gesture
recognition.

With the exponentially increasing number of IoT devices and
the huge amount of data traffic generated by these devices, we have
designed the system EAR to recognize human gesture and gross
motions by only listening to the existing ambient RF traffic. We
have conducted extensive experiments in a real-world apartment
and performed 11,2250 instances of gestures and gross motions.
The signal sources distinguishing and human gesture recognition
accuracies are up to 99.76% and 92.63%, respectively.
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