
Using Semantic Web technology in Multi-Agent Systems:
a case study in the TAGA trading agent environment

Youyong Zou, Tim Finin, Li Ding, Harry Chen, Rong Pan
 U.Maryland Baltimore County

 1000 Hilltop Circle
 Baltimore, MD, 21250

 410-455-3971

 {yzou1,finin,dingli1,hchen4 }@cs.umbc.edu

ABSTRACT
Travel Agent Game in Agentcities (TAGA) is the framework that
extends and enhances the Trading Agent Competition (TAC)
scenario to work in Agentcities, an open multi agent environment
based on FIPA compliant pla tforms. TAGA uses the semantic web
languages and tools (RDF and OWL) to specify and publish the
underlying common ontologies; as a content language within the
FIPA ACL messages; as the basis for agent knowledge bases via
XSB-based reasoning tools; to describe and reason about services.
TAGA extends the FIPA protocols to support open market auctions
and enriches the Agentcities with auction services. The introducing
of the semantic web languages improves the interoperability among
agents. TAGA is intended as a platform for research in multi-agent
systems, the semantic web and automated trading in dynamic
markets as well as a self-contained application for teaching and
experimentation with these technologies.

Keywords
Agentcities, FIPA, Multi Agent System, OWL, Semantic Web,
Trading Agent Competition.

1. INTRODUCTION
The Trading Agent Competition (TAC) [Wellman, 2002] was a test
bed for intelligent software agents that interact through simultaneous
auctions to obtain services for customers. The trading agents
operated within the travel market scenario, buying and selling goods
to best serve their given travel clients. TAC was designed to
promote and encourage research in markets involving auction and
autonomous trading agents and had proven to be successful after
three consecutive year’s competitions.

Although TAC’s framework, infrastructure and game rules had
evolved over the past three competitions [Stone, 2000] [Greenwald,
2001] [Wellman, 2002], the assumptions and approach of TAC
limited its usefulness as a realistic test bed for agent based
automated commerce. TAC used centralized market server as the

sole mechanism for service discovery, communication, coordination,
commitment, and control among the partic ipating software agents.
The trading agents communicate with the central auction server
through network socket interface, exchanging pre-defined XML-
based messages. In real world, the auction servers (for example,
priceline.com and hotwire.com) and service providers are
distributed among the massive open Internet and have distinct
service descriptions and diverse service access interfaces. The
abstractness and simplicity of the TAC approach helped to launch it
as a research vehicle for studying bidding strategies, but are now
perceived as a limiting factor for exploring the wide range of issues
inherent in automated trading in open environment.

Agentcities [Dale, 2002] is the international initiative designed to
explore the commercial and research potential of agent-based
applications by constructing an open distributed network of
platforms to host diverse agents and services. The ultimate goal is to
enable the dynamic, intelligent and autonomous composition of
services to achieve user and business tasks, therefore creating
compound services to address changing needs. In such an open and
distributed environment, the need of standard mechanisms and
specifications is crucial for ensuring interoperability of distinct
systems. The Foundation for Intelligent Physical gents (FIPA)
produces such standards for heterogeneous and interacting agents
and agent-based systems. In the production of these standards,
FIPA promotes the technologies and interoperability specifications
that facilitate the end-to-end inter-working of intelligent agent
systems in modern commercial and industrial settings.

Inspired by TAC, we have developed Travel Agent Game in
Agentcities (TAGA) on the foundation of FIPA technology and the
Agentcities infrastructure. The agents and services use FIPA
supported languages, protocols and service interfaces to create the
travel market framework and provide stable communication
environment where messages expressed in semantic languages can
be exchanged. The travel market is the combination of auctions and
varying markets including service registries, service brokerage,
wholesalers, peer-to-peer transactions, bilateral negotiation, etc.
This provides a richer test bed for experimenting with agents and
web services as well as a interesting scenario to test and challenge
agent technology. TAGA is running as a continuous open game at
http://taga.umbc.edu/ and source code is available for research and
teaching purposes.

The next section introduces the TAGA game and six types of
agents. The details of using semantic web technology are presented
in Section three. We discuss TAGA’s features and our research

contributions in Section four and suggest the future works in Section
five.

2. TAGA GAME AND AGENTS
We design TAGA as a general framework for running agent-based
market simulations and games. Our first use of TAGA has been to
build a travel competition along the lines that used in the last three
year‘s TACs. In the competition, customers travel from City A to
City B and spend several days before flying back. A travel
package includes a round-trip flight ticket, corresponding hotel
accommodation and tickets to entertainment events. A travel agent
(an entrant to the game) competes with other travel agents in
making contracts with customers and purchasing the limited travel
services from the Travel Service Agents. Customer selects the
travel agent with best travel itinerary. The objective of the travel
agent is to acquire more customers, fulfill the customer’s travel
package, and maximize the profit.

TAGA provides a flexible framework to run the travel market
game. Figure 1 show the structure of TAGA. The collaboration and
competition among six types of agents who play different market
roles simulate the real world travel market. We find that basing our
implementation on FIPA compliant agent platforms has made the
framework extremely flexible. We’ll briefly describe the different
agents in our initial TAGA game.

Figure 1: TAGA Architecture

The Auction Service Agent (ASA) operates all of the auctions in
TAGA. Supported auction types include English and Dutch auctions
as well as other dynamic markets similar to Priceline.com and
Hotwire.com.

A Service Agent (SA) offers travel related service units such as
airline tickets, lodging and entertainment tickets. Each class of travel
related service has multiple providers with different service quality
level and with limited service units. It allows other agents to query
its description (e.g. service type, service quality, location) and its
inventory (the availability or price of a certain type of service unit).
Other agents may directly buy the service units through published
service interface. SA also bids intentionally in the auctions to sell its
good, e.g. listing its goods in auction and wait for the proper buyer.

A Travel Agent (TA) is a business that helps customers acquire
travel service units and organize travel plan. The units can be
bought either directly from the service agents, or through an auction
server.

A Bulletin Board Agent (BBA) provides a mechanism helping
customer agents find and engage one or more travel agents.

A Customer Agent (CA) represents an individual customer who
has particular travel constraints and preferences. Its goal is to
engage one or more TAs, negotiate with them over travel packages,
and select one TA that is able to acquire all needed travel service
units.

The Market Oversight Agent monitors the game and updates the
financial model after each reported transaction and finally
announces the winning TA when the game is over.

The basic cycle of the TAGA game has the following five stages:

• A customer-generating agent creates a new customer with
particular travel constraints and preferences chosen from a
certain distribution.

• The CA sends the customer’s travel constraints and
preferences to the BBA in the form of a CFP (call for
proposal) message. The BBA forwards the CA’s CFP
message to each of the TAs that has registered with it. Each
TA considers the CA's CFP independently and decides
whether and how to respond.

• When deciding to propose a travel package, The TA contacts
the necessary ASAs and SAs and assembles a travel itinerary.
Note that the TA is free to implement a complex strategy using
both aggregate markets (ASAs) as well as direct negotiation
with SAs. The proposal to the CA includes the travel itinerary,
a set of travel units, the total price and the penalty to be
suffered by the TA if it is fail to complete the transaction.

• The CA negotiates with the TAs ultimately selecting one from
which to purchase an itinerary based on its constraints,
preferences and purchasing strategy (which might, for
example, depend on a TA’s reputation).

• Once the TA has a commitment from the CA, it attempts to
purchase the units in the itinerary from the ASAs and SAs.
There are two possible outcomes: the TA acquires the units
and completes the transaction resulting in a satisfied CA and a
profit or loss for the TA, or the TA is unable or unwilling to
purchase all of the units, resulting in an aborted transaction and
the invocation of the penalty (which can involve both a
monetary and a reputation component).

3. AGENT COMMUNICATION
3.1 Agent Communication Model
The previous TACs used a straightforward client-server
architecture in which a single TAC server managed all travel
service suppliers as well as the customers. Game participants wrote
travel agency (TA) agents that connected as clients to the central
TAC server. Moreover, these TA agents could only interact with
service providers through centralized auction markets. While this
architecture greatly simplifies both the development of the TAC
infrastructure and the programming of a TAC client, it is a poor
model for commerce in the real world.

Peer-to-peer or multi-agent systems offer a more realistic model
where customers, service providers and various kinds of
“middlemen”, including market providers, operate as autonomous
peer agents. Moreover, agents can develop complex strategies,
which involved a combination of direct transactions (e.g., TA buy

direct from hotel agent) as well as auction-mediated transactions of
various kinds. Finally, adopting a multi-agent systems approach
integrated all aspects of commerce (service discovery, information
seeking, negotiation, decision making, commitment, transaction
execution et.) in a more natural manner.

The FIPA standards offer mature specifications for multi-agent
systems communication, interactions and infrastructure with an
emphasis on agent communication languages (ACLs) and protocols.
We found the FIPA framework to be a good one for TAGA when
augmented with the semantic web languages RDF [zou, 2003] and
OWL. In the remainder of this section we will describe the choices
made for the content languages.

3.2 OWL as Content Language
The content language is a language used to express the content of
messages exchanged between agents. The FIPA communication
infrastructure allows agents to communicate using any mutually
understandable content language as long as it satisfies a few
minimal criteria as a FIPA compliant content language. Published
FIPA specifications provide a library of registered FIPA compliant
content language, including FIPA-SL, XML and RDF. A good
content language should be able to express rich forms of content
and can be efficiently processed and fit well with existing
technology. XML, used by the TAC system, is adequate as a low
level language for encoding information but falls short as a language
in which to express information at the knowledge level, even when
augmented by more recent components such as XML Schema, XSL
or through applications such as WSDL.

Our TAGA system uses OWL [Dean, 2002] as the content
language for agent communication. Compared with RDF that used
on our previous TAGA work [Zou, 2003], OWL has a well-defined
model-theoretic semantics as well as an axiomatic specification that
determines the intended interpretations of the language. OWL is
unambiguously computer-interpretable, thus making it amenable to
agent interoperability and automated reasoning techniques. The
benefit of adopting a stronger semantically rich content language
like OWL is that it facilitates a higher-level of interoperability
between agents. By agreeing on how meaning is conveyed, it is
simpler for applications to share meaningful content.

We have defined the OWL ontology for use as a FIPA-compliant
content language. In addition to the basic required classes (e.g.,
Agent, ACLMessage, Service, etc.) and necessary expressive
requirement (such as Proposition, Action, and Reification), our
ontology provides supports for expressing rules, queries and
responses to queries. We believe that OWL is a good choice as a
general ACL content language for four reasons. First, its
expressive power as a knowledge representation language seems to
be adequate for many if not most needs of current agent based
systems. Second, it offers better support for using terms drawn
from multiple ontologies than do current popular ACL content
languages. Third, as a semantic web language, it is designed to fit
into and integrate with web-based information and service systems.
Fourth, OWL has the potential to be a widely accepted and used
representation language, enhancing the potential for interoperability
among many systems. We will touch briefly on the first two points
and leave the others as exercises for the reader.

 To demonstrate that OWL is an adequate language for ACL
content we consider a list of test cases presented in [Bothelo 2002].

These examples were used as an expressive test for a candidate
FIPA content language and compared the result of encoding these
in SL, KIF, ebXML, Prolog and DAML. Clearly OWL is less
expressive than SL, KIF or Prolog, but the OWL version of these
test cases given in Table 1 show that it’s up to most of tasks it might
be asked to serve.

Table 1: OWL Expre ssivity Test

Expressio
n

Representation Comment

“Schröding
er’s Cat is
alive”

<Cat rdf:ID=“schrödinger-s_cat”>
 <owner>Shrodinger</owner>
 <status> alive </status>
</Cat>

There is a
live cat in
the world
whose
owner is
Shrodinger.

“Cats are
animals”

<owl:Class rdf:ID=“cat”>
 <rdfs:subClassOf
rdf:resource=“#animal”>
</owl:Class>

Cat is
subclass of
animal

“You
making the
tea”

<fipaowl:Action
rdf:ID=”tea_action1”>
 <fipaowl:act>making-tea
</fipaowl:act>
<fipaowl:actor>you</fipaowl:actor>
<fipaowl:Action>

There is a
making-tea
action,
“you” are
the actor.

“Drinking
too much
is bad for
you”

<Behavior rdf:ID=“drinktoomuch”>
<hasBehavior>excessive_drinking</
hasBehavior>
<healthy>bad</healthy>
</Behavior >

The
behavior of
drinking too
much is bad
for your
health.

“All red
things”

<owl:Class rdf:ID="allredthing ">
<owl:intersectionOf
rdf:parseType="Collection">
<owl:Classrdf:about="#Thing"/>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="#hasColor" />
 <owl:hasValue
rdf:resource="#Red" />
 </owl:Restriction>
</owl:intersectionOf>
</owl:Class>

The things
whose color
are red.

“Any color
a car might
have”

<owl:Class rdf:ID="anycarcolor">
 <rdfs:subClassOf>
<owl:Restriction>
 <owl:onProperty
rdf:resource="#color" />
<owl:allValuesFrom
rdf:resource="#CarColor " />
 </owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

The color
that limits
the color
property
value in the
car colors.
This can
also be a
query:
“Select
color where
color in Car
Color”

“All things
are hot”

<owl:Class rdf:about= “#Thing”>
<rdfs:subClassOf>

All things’s
temperature

 <owl:Restriction>
 <owl:onProperty
rdf:resource="#tempterature"/>
<owl:hasValue rdf:resource="#hot"
/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

are hot.

“Somethin
g is cold”

<owl:Thing rdf:ID= “cold_thing”>
<temperature>cold</temperature>
</owl:Thing>

There exist
something
whose
temperature
is cold.

“Herring
or Perch”

<owl:oneOf
rdf:parseType="Collection">
<owl:Thing rdf:about="#Vokda "/>
 <owl:Thing rdf:about="#Perch"/>
 </owl:oneOf>

“Vodka
and
Tonic”.

 <owl:union Of
rdf:parseType="Collection">
<owl:Class rdf:about="#Vodka " />
 <owl:Class rdf:about="#Tonic" />
 </owl:unionOf>

“Not
cricket”

<owl:Class rdf:ID="Noncricket">
 <owl:complementOf
rdf:resource="#Cricket " />
 </owl:Class>

“Success
implies
Payment”

<fipaowl:Rule> <fipaowl:Implies >
<fipaowl:head >
Payment</fipaowl:head >
<fipaowl:body >Success
</fipaowl:body >
</fipaowl:Implies> </fipaowl:Rule>

The rule :
Payment :-
Success.

“Luis has
the
persistent
goal that
W”

<Person rdf:ID= “Luis”>
 <hasPersistentGoals> W
</hasPersistentGoals>
</Person>

“Steve
Believes
X”

<Person rdf:ID=”steve”>
 < hasProposition>
 < Belief rdf:ID=”stevebelief1”>
 < believe>true</believe>
< Statement > X</Statement>
 </Belief> </hasProposition>
</Person >

“Jonathan
Desires
Y”

<Person rdf:ID=”Jonathan”>
 <hasProposition>
<Desire rdf:ID=”jonthandesire11”>
<desire >true</desire>
<Statement > Y </Statement>
</Desire> </hasProposition>
</Person >

“Matthias
Intends Z”

<Person rdf:ID=”Matthias”>
 < hasProposition>
<Intend rdf:ID=”Matthiasintend1”>
 <intend>true</intend>
 <Statement > Z </Statement>
 </Intend> </hasProposition>
</Person >

Compared with other ACL content languages, OWL provides much
better support in modeling, maintaining, and sharing ontologies.
Standard content languages such as SL and KIF offer no explicit
mechanisms for ontology support. FIPA inherited the simple
mechanism for ontology specification first used in KQML that
essentially required that all content terms in a particular message be
tagged as coming from a single ontology. Although variations and
“work arounds” to this constraint have been proposed, implemented
and used, none have been formally adopted as part of the stable
FIPA specification. OWL supports multiple namespaces and
ontologies and, in fact, is a large part of its raison d'etre. Large
scale and open multi-agent systems will benefit from OWL’s
abilities to integrate information from different ontologies.
Moreover, OWL and other semantic web languages, will better
support other services essential to large scale open systems, such as
the capability to translate or map information from one ontology to
another and to negotiate meaning or otherwise resolve differences
between ontologies.

3.3 Understanding Messages
When an agent receives an incoming ACL message, it computes
the meaning of the message from the ACL semantics, the protocols
in effect, the content language and the conversational context. The
agent’s subsequent behavior, both internal (e.g., updating its
knowledge base) and external (e.g., generating a response) depends
on the correct interpretation of the message’s meaning. Thus, a
sound and, if possible, complete understanding the semantics of the
key communication components (ACL, protocol, ontologies, content
language, context) is extremely important. In TAGA, the service
providers are independent and autonomous entities, which makes
enforcing a design decision that all use exactly the same ontology or
protocol difficult, if not impossible. For example, the Delta Airline
service agent may has its own view of travel business and uses
class and property terms that extend an ontology used in the
industry as a whole. This situation parallels that for the semantic
web as a whole – some amount of diversity is inevitable and must
be panned for lest our systems become impossibly brittle.

The ontologies in TAGA are distributed and managed by multiple
parties. This distributed model is a better fit for deployment in an
open web environment. There is no centralized site or agent that has
to understand every ontologies. Ontologies and rules are designed
and implemented by service owners to reflect their business models
and meet their requirements; tan agent belonging to a service owner
is responsible for answering the question related to the ontologies it
uses. Ontologies store in local and may access only by local agent.
We could define personalized ontologies and rules. It would help
resolving the problem of security and trust.

Many of the agents we have implemented in the TAGA system use
FOWL (Flora OWL) to represent and reason about content
presented in RDF or OWL. FOWL is a flora-2 [Yang 2000]
program that interprets RDF and OWL represented as a collection
of RDF triples. Flora-2 is itself a compiler that compiles from a
dialect of f-logic into XSB, taking advantage of the tabling, HiLog
and well-founded semantics for negation features found in XSB. On
receiving an ACL message with content in RDF or OWL, a TAGA
agent parses the content into triples, which are then loaded into the
XSB engine for processing.

The message’s meaning (communicative act, protocol, content
language, ontologies and context) all play a part in the interpretation.
For example, receiving a query message using query protocol, the
agent searches its knowledge base for matching answers and
returns an appropriate inform message. TAGA uses multiple models
to reflect the multiple namespace and ontologies in the system. The
agent treats each ontology as an independent Model in XSB engine.
The support of ontology sharing and exchanging is achieved by
defining a set of ontology related actions:

• NewInstance: this message creates an instance using the
specified ontology and the provided instance data;

• OntologyQuery: this message queries other agents about the
terms defined in their ontology;

• OntologyShare: this inform message is about the ontology
definition, which include Class/Property definition, Class-
Subclass relation and Class-Property relation.

• OntologyRelation: this message is about the conversion and
relations among class or property term defined different
ontologies. For example, agent A informs agent B that the
class Person is same class as the class Human used by agent
B. The relations include extension, identical and equivalent.
This message can be an inform message informing other
agents about the relation, or query message asking to confirm
the relation, or request message asking to translate the
ontology term used in multiple ontologies.

3.4 Query Support
Among the most important communicative acts used by agents are
those designed to support querying. The FIPA ACL has a very
simple query model supporting just two acts -- query-if and query-
ref – but allows a more complicated query to be encoded as a
request act. In order to use semantic web languages for ACL
content, we have experimented with the integration of a number of
RDF based approaches, including DQL, RQL, RDQL, Triple, and
TAP. Since a consensus query system has not yet emerged, we
have adopted an approach in which agents can use any of several
query systems and associated protocols. An agent specifies the
query languages and protocols it understands as part of its basic
service description. Other agents who intend to submit query to this
agent are expected to encode the query string in one of the support
languages. Table 2 is a query and answer example using RDQL
language.

Table 2: Query and answer example

Query:

<fipaowl:Query rdf:ID=”query1”>

 <fipaowl:queryLanguage>rdql</fipaowl:queryLanguage>

 <fipaowl:question>

“SELECT ?x,?y

FROM <people.rdf>

WHERE (?x,<dt:friend>,?y),(?y,<dt:friend>,?x)

AND ?x<^gt;?y

USING dt for <http://foo.org#>, rdf for
http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 </fipaowl:question>

 <fipaowl:result_number>10</fipaowl:result_number>

 </fipaowl:Query >

Answer:

<fipaowl:Query rdf:about=”query1”>

 <fipaowl:queryLanguage>rdql</fipaowl:queryLanguage>

 <fipaowl:result_number>1</fipaowl:result_number>

 <fipaowl:answer>

“Array ([0] => Array ([?x] =>
http://foo.org/persons/Carl [?y] =>
http://foo.org/persons/Peter) [1] => Array
([?x] => http://foo.org/persons/Peter [?y]
=> http://foo.org/persons/Carl))”

 </fipaowl:answer>

 </fipaowl:Query>

We have found that the basic framework of FIPA standards
support this approach well by having a good set of primitive
communicative acts, a way for agents to define communication
protocols, and a sound mechanism by which agents can describe
their capabilities and the supporting services. We are planning to
experiment with adding mediator agents to TAGA that offer a query
translation service. Such an agent would be able to handle several
kinds of query languages permitting it to act as a proxy. For
example, agent A might wish to ask a DQL query of agent B, which
only understands RQL. A query translation service able to process
both DQL and RQL could provide the mediation service – receiving
a DQL query from A, sending appropriate RQL queries to B,
accepting the response, and reformulating to fit the DQL protocol.

4. DISCUSSION
In this section we will briefly discuss several additional design issues
we have addressed in TAGA.

Ontologies. In addition to the FIPA content language ontology, we
have defined two domain ontologies in OWL. The first is a travel
ontology that covers the basic concepts of traveling needed in
TAGA, include the travel itinerary, customers, travel services and
service reservations. The second ontology is one for auctions. This
ontology is used to define the different kinds of auctions, the roles
the participants play in them, and the protocols used.

Service description and matching. FIPA agents are associated
with one or more FIPA platforms, each of which offers a set of
agent services including a Directory Facility (DF) agent that handles
service registration, deregistration and matching. When an agent
registers a service in a DF, it provides service information like the
service type and owner. However, more specific service
information may also be useful when searching for agent services.
For example, a customer may want a booking in a hotel with at least
three star rating, is close to public transportation, offers breakfast,
and accepts VISA card payments. This can be achieved with the
use of DAML-S [DAML-S, 2002] profile. In TAGA, every travel
service provider describes its service process model with DAML-S
language and publishes it as a web page. This covers basic service
information like address, phone number and service interface
information. For example, a hotel may describe booking service as:
customer name, payment methods, travel date as input; reserve

number as output; the effect of booking is one room occupied at the
travel date. The travel agent, who is responsible for organizing
travel package, is able to contact with customer agent and related
service agents and finds the best match. First the travel agent loads
the DAML-S parsing rule and planning rules into its XSB reasoning
engine. It then loads service agents’ DAML-S profiles and
customer’s personal profile. The best matching service providers
are selected and a most profitable travel package is composed
dynamically.

Implementation comments. The original Trading Agent
Competitions relied on a few centralized market servers to handle
all interactions and coordination, including service discovery, agent
communication, coordination, and game control. In contrast, the
TAGA framework uses a distributed peer-to-peer approach based
on standard agent languages, protocols and infrastructure
components (FIPA, Agentcities), emerging standards for
representing ontologies, knowledge and services (RDF, OWL,
DAML-S) and web infrastructure (e.g., Sun’s Java Web Start).
Several FIPA pla tform implementations are currently used within
TAGA, including Jade and AAP (April Agent Platform),
demonstrating agent interoperability. Our current demonstration
system allows new users to dynamically join a running game at any
time. A dummy agent implemented in JADE can be downloaded
and run to instantiate a new TA agent. A simple GUI allows the
user to set operating parameters or the java code can be modified or
extended. A set of web based monitoring services allow one to see
the status of a game, examine messages being sent, lookup the
reputation of agents, etc.

Contribution. We see two main contributions in our work. First,
TAGA provides a rich framework for exploring agent-based
approaches to e-commerce like applications. Our current
framework allows users to create their own agent (perhaps based
on our initial prototype) to represent a TA or SA and to include it in
a running game where it will compete with other system provided
and user defined agents. We hope that this might be a useful
teaching and learning tool, not only for multi-agent systems
technology, but also for the semantic web languages RDF and
OWL and their use in agent based systems. Secondly, we hope that
TAGA will be seen as a flexible, interesting and rich environment
for simulating agent-based trading in dynamic markets. Agents can
be instantiated to represent customers, aggregators, wholesalers,
and service provides all of which can make decisions about price
and purchase strategies based on complex strategies and market
conditions. Moreover, simulations like TAGA encourage exploring
aspects of e-commerce that go beyond auction theory. TA agents
might compete on their ability to better understand the descriptions
of services sought and services offered and the basic models of the
preferences of their users in order to best satisfy the needs of their
clients. These descriptions, of course, will be in a semantic web
language like OWL.

5. Conclusions and future work
Travel Agent Game in Agentcities (TAGA) is a framework that
extends and enhances the Trading Agent Competition (TAC)
system to work in Agentcities, an open multiagent systems
environment of FIPA compliant systems. We hope that TAGA will
serve as an experimental test-bed for several communities of users.

First, it provides an environment, which can be used to explore
aspects of multiagent systems technology based on the mature,
published FIPA standards. Research on multiagent systems
technology is best done with in a rich yet easily understood problem
domain. We have found that the travel agent scenario as originally
put forth by TAC provides both the richness as well as accessibility,
especially when opened up to be peer-to-peer. We are using
TAGA as a test-bed for research on the use of semantic web
languages (e.g., RDF and OWL) as content languages and as
service description languages. Future work is planned in adding
more sophisticated negotiation and ontology mapping to our TAGA
environment.

Second, we hope that TAGA could serve as an interesting
framework and test-bed for experiments with automated markets
and trading. By adding autonomous service provide agents (e.g., for
hotels) one could experiment with a dynamic market with both
“shopbots” and “pricebots” or investigate the role of intermediation
in the form of agents performing a wholesale function.

Third, we hope that others will find TAGA useful as a test,
demonstration and teaching environment, both in technology classes
focused multi-agent systems, FIPA standards or the semantic web
and in business or e-commerce classes focused on automating
commerce and trading, auctions or agent-based simulations.

The Agentcities project is exploring the delivery and use of agent-
based services in an open, dynamic and international setting. We
are working to increase the integration of TAGA and emerging
Agentcities components and infrastructure and will include agents
running on handheld devices using LEAP.

6. REFERENCES
[Bothelo 2002] L. Bothelo, S. Willmott, T. Zhang, J. Dale, A review
of Content Languages Suitable for Agent-Agent Communication,
EPFL I&C Technical Report #200233.

[Dale, 2002] J. Dale, S. Willmot, and B.Burg: Agentcities:
Challenges and Deployment of Next-Generation Service
Environments. Proc. Pacific Rim Intelligent Multi-Agent Systems,
Tokyo, Japan, August 2002.

[DAML-S, 2002] The DAML Services Coalition (alphabetically
Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Lassila,
David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini
Narayanan, Massimo Paolucci, Terry R. Payne and Katia Sycara):
DAML-S: Web Service Description for the Semantic Web, The
First International Semantic Web Conference (ISWC), Sardinia
(Italy), June, 2002.

[Dean, 2002] M. Dean and Guus Schreiber (eds): OWL Web
Ontology Language 1.0 Reference. W3C Working Draft.

[Greenwald, 2001] Amy Greenwald and Peter Stone: Autonomous
Bidding Agents in the Trading Agent Competition, IEEE Internet
Computing, March/April 2001.

[Greenwald, 2003] Amy Greenwald (ed.). The 2002 trading agent
competition: An overview of agent strategies. AI Magazine, to
appear

[Sagonas, 1994] Kostantinos Sagonas, Terrance Swift, and David S.
Warren: XSB as an efficient deductive database engine, In ACM
Conference on Management of Data (SIGMOD), 1994.

 [Stone, 2000] Peter Stone and Amy Greenwald: The First
International Trading Agent Competition: Autonomous Bidding
Agents, Electronic Commerce Research Journal pp1-36, 2000.

 [Wellman, 2002] Michael P. Wellman, Amy Greenwald, Peter
Stone, and Peter R. Wurman: The 2001 Trading Agent Competition,
Fourteenth Innovative Applications of Artificial Intelligence
Conference (IAAI-2002), pp935-941, Edmonton, August 2002.

[Willmott, 2001] Willmott, S., Dale, J., Burg, B., Charlton, P. and
O'Brien, P., Agentcities: A Worldwide Open Agent Network. In:
AgentLink News, Issue 8, November 2001.

[Yang, 2000] Guizhen Yang and Michael Kifer. FLORA:
Implementing an efficient DOOD system using a tabling logic
engine. Proceedings of Computational Logic --- CL-2000, number
1861 in LNAI, pp 1078--1093. Springer, July 2000.

[Zou, 2003] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and
Rong Pan, TAGA: Trading Agent Competition in Agentcities,
Workshop on Trading Agent Design and Analysis, held in
conjunction with the Eighteenth International Joint Conference on
Artificial Intelligence, Monday, 11 August, 2003, Acuulco MX.

