
Implementing Agent-based Web Services
Jonathan Dale

Fujitsu Laboratories of America
595 Lawrence Expressway
Sunnyvale, CA 94085, USA

jonathan.dale@fla.fujitsu.com

Luigi Ceccaroni
Fujitsu Laboratories of America

595 Lawrence Expressway
Sunnyvale, CA 94085, USA
luigi.ceccaroni@lycos.com

Youyong Zou*

CSEE Department
U. Maryland, Baltimore County

 1000 Hilltop Circle
Baltimore, MD 21250, USA

yzou1@cs.umbc.edu

Avigail Agam*
Department of Computing

Imperial College
180 Queen's Gate

London, SW7 2BZ, UK
aa1199@doc.ic.ac.uk

ABSTRACT
As part of the Agentcities project, we have developed a prototype
of an Evening Organiser application which allows users to
flexibly and dynamically schedule activities within an itinerary.
The Evening Organiser and the Web-accessible restaurant and
cinema services which it uses have been developed within a
generic service environment and the implementation of this has
been built using the April Agent Platform, the DAML+OIL
ontology language, the DAML Query Language and the Java
Theorem Prover. This service environment is populated with
agents of different natures, such as service instances and service
finders. Service instances represent individual business entities,
such as restaurants and cinemas. Service finders represent
aggregated views over service instances, such as Yahoo!-hosted
restaurants or Citysearch-hosted cinemas. The details of the
implementation of these Web Services are described through the
use of a motivating scenario.

General Terms
Algorithms, Design, Implementation, Experimentation,
Languages.

Keywords
Agents, Ontologies, Agentcities, FIPA, DAML+OIL, Web
Services, April.

1. INTRODUCTION
The Agentcities.RTD project, funded by the European
Commission, is part of a worldwide initiative [12] intended to
realize and advance the potential of agent-based applications by
constructing an open, distributed network of platforms hosting
diverse agents and services. The ultimate aim of Agentcities is to
enable the dynamic, intelligent and autonomous composition of
services to achieve user and business goals. Communication
among these services has part of its semantic grounding in a series
of utility ontologies, which model common general concepts, and
in several ontologies for specific domains, such as Travel, Food,
Lodging and Entertainment.

In the context of the Agentcities.RTD project, an Evening
Organiser (EO) is an agent-based Web Service which helps the
user to plan an evening, composing services, such as cinemas,
theatres, restaurants, ratings and reviews. As of April 2003, two
EOs have been presented in different phases of development,
within the Agentcities.RTD project: the Fujitsu EO Prototype and
the Motorola EO, which are both non-refined Agentcities
demonstrators.

In this paper, we present the design and implementation of the
Fujitsu EO Prototype, version 2, and of the associated Web
Services which reside in a complex, distributed, agent-based
environment called the Agentcities Network.

2. THE EVENING ORGANISER
The Fujitsu EO Prototype 2 refines, improves and extends a
previous prototype developed for the Agentcities.RTD project.
Prototype 2 implements an architecture, previously presented in
[2], into an entertainment-based B2C environment. Agents and
services of Prototype 2 are based on various technologies and
standards, primarily: the April Agent Platform (AAP) [1], the
Foundation of Intelligent Agents (FIPA) software standard and
various DAML-based languages.

2.1 General Description
The motivating scenario behind the development of our EO is a
user who would like to organize an evening out and, moreover,
would like to have the system resolve most of the details on their
behalf. Using predefined templates and preferences, an itinerary is
composed by the personal assistant agent (PAA) and passed to the
EO for resolution using the services that are available in the
environment. If the EO cannot solve the itinerary, then it plans
alternative-itinerary suggestions and returns these to the PAA for
the user to either approve or modify. Upon approval by the user,
the individual events in the itinerary are booked and confirmed
with the appropriate services instances.

The actors in Prototype 2, besides the human user, are the PAA,
the EO agent, restaurant and cinema service-finders and service-
agents (see Figure 1). The roles and capabilities of the two main
agents in the environment are as follows. The PAA gathers
personal information about the user; composes itineraries, which
are derived from a collection of templates, such as Pizza and a
Movie, Oysters and the Opera, Burger and a Rollercoaster, or,
alternatively, are entirely new itineraries from the user; customizes
the itineraries with the preferences of the user, for example,
Japanese restaurants or Mozart operas; manages the outstanding
itineraries of the user (of which there may be many).

In turn, the EO interrogates the local service environment;
attempts to resolve the itineraries by selecting specific service
instances (found by querying service finders); interacts with the
PAA in the process of itinerary refinement.

We believe that by moving towards an interaction metaphor of
indirect manipulation [11], with agents as the autonomous actors
performing actions on behalf of the user, systems such as our
prototype EO can help users to plan most, if not all, of an
itinerary.

information registration
que

ry r
esu

lts

boo
kin

g

det
ails

 (m
enu

)

Figure 1: Agent Roles in Prototype 2

2.2 Component Implementation
The Prototype 2 is mainly implemented in the April
programming language [9] and is built on top of a FIPA-
compliant agent platform called the April Agent Platform (AAP)
[1]. This prototype also uses the ICM [10] (an asynchronous
communications system for multi-agent systems), Webstream
[7] (which allows April programs to easily collect repetitive
information from Web pages, such as the results pages of search
engines), and MySQL (a popular, open-source database). Some
of the technologies we use and their interactions can be seen in
Figure 2.

In this section we describe in details how Prototype 2 works and
what it can achieve, by describing the functionality of the main
agent components and following an accompanying scenario.
Details for running Prototype 2 can be found in [3].

2.2.1 Service Instances
An April program generates a number of AAP-based restaurant
service instances (SIs) with information being gathered from the
Internet through a Webstream crawler. A second program
similarly generates a number of cinema SIs. These instances
represent real restaurants and cinemas (for example, Ace
Wasabis Rock’n’Roll Sushi restaurant or AMC cinema) and are
modelled as persistent parts of the environment. Each of these
SIs registers its set of available services with the Directory
Facilitator (DF) of the platform through a FIPA ACL message:

(request
 :sender restSI@sf.us.ac.net
 :receiver df@sf.us.ac.net
 :language fipa-sl0

 :ontology fipa-agent-management
 :protocol fipa-request
 :content
 "((action register df@sf.us.ac.net
 :df-agent-description (
 :name restSI@sf.us.ac.net
 :services (set
 :service-description (
 :name BookTable
 :type RestaurantInstance)
 :service-description (
 :name QueryMenu
 :type RestaurantInstance)
 ...))))")

After registering, the SI generates a MySQL database with the
data organised in the tables containing all of the information
necessary to model most of the functions of a restaurant business
entity. The data modelling for the restaurant and the cinema is
derived from the Restaurant and the Shows ontologies, which
were developed collaboratively by the authors and other partners
in the Agentcities.RTD project.

The MySQL database is used to provide the persistence of the
restaurant or cinema business entities. If the service agent is
terminated, it can quickly and automatically be restarted and
reconnected to its database.

Finally, the SI models all of the pertinent information about the
restaurant or cinema as a DAML-S service profile, which is
published on the San Francisco Agentcity Web server. This
allows other Semantic Web-enabled software to find out
information about the SI and use it for their needs (for example,
a search engine that supports semantic querying).

Figure 2: Technologies and Information Flow in Prototype 2

2.2.2 Service Finders
Another April program generates a number of aggregated views
(or finders) of service instances. These finders represent Internet
portals or other composite service providers who deal in
information from multiple restaurants and cinemas, for example,
French restaurants in San Francisco found through Yahoo! or
cinemas in San Francisco found through Citysearch. In a real-
world scenario, these service finders would run on the computer
systems of the portals and possibly be accessed directly by the
user via an HTML interface. Finders are characterized by a pattern
expressed in the DAML Query Language (DQL) [7], such as:

<dql:Query>
 <dql:queryPattern>
 <dql:conjuction>
 <dql:triple
 dql:subject="profile:serviceType”
 dql:predicate="rdf:value"
 dql:object="RestaurantInstance"/>
 <dql:triple
 dql:subject="restprofile:CuisineType"
 dql:predicate="rdf:value"
 dql:object="restaurant:Italian"/>
 <dql:triple
 dql:subject="restprofile:InfoSource"
 dql:predicate="rdf:value"
 dql:object="restaurant:yahoo"/>
 </dql:conjuction>
 </dql:queryPattern>
</dql:Query>

This example expresses a search pattern over a number of
properties in a DAML-S description, namely, any service instance
which is a Restaurant, which offers Italian Cuisine and is part of
the Yahoo! portal. It is important to be able to determine the
information source of business entities such as restaurants and
cinemas since business models can be based upon reputation and
advertisement. The restrictions on the properties of service
instances are passed as a DQL expression to the service finder
when it is started. The finder uses part of this information (the
profile:serviceType) to send a FIPA-SL [5] query to the DF,
asking for a restricted set of service instances, for example, only

for restaurant services. The DF returns a list of service instances
which match this request and the service finder iterates over this
list, sending a message to each service instance and inviting it to
register its DAML-S profile. If the service instance agrees, then it
replies with a message which contains the URI of its DAML-S
profile, which is retrieved by the service finder through an HTTP
call.

Each received DAML-S profile is compared to the DQL
expression that the service finder was started with and only if it
matches it is added into a Java Theorem Prover (JTP) engine [8]
as a fact, which can then be used to answer queries that use either
DQL or KIF expressions.

2.2.3 Evening Organiser Agent
The EO agent is an April program which receives and fulfils
evening plans (called itineraries) using the services available in
the environment. The EO is a meta-service for the entertainment
domain; examples of other Web-based meta-services with similar
functionality are Expedia, Travelocity and Orbitz.

2.2.4 Personal Assistant Agent
The PAA is the representative of the user and is started with a
user personal profile, in DAML+OIL [6], such as:

<Profile>
 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
 <Organization>Fujitsu</Organization>
 <Email>j.smith@fujitsu.com</Email>
 <ZipLocation>94085</ZipLocation>
 <PhoneNumber>15551234</PhoneNumber>
 <Restaurant.typeOfCuisine>
 VegetarianCuisine</Restaurant.typeOfCuisine>
 <Performance.genre>SciFiMovie</Performance.genre>
</Profile>

This profile contains personal information about the user, such as
his favourite cuisine and movie types, and is designed to simulate
the information that a personal profiling agent might capture

either by watching the user to determine behaviour patterns, or by
being explicitly told.

2.3 Scenario
In our scenario, the user Joe Smith wants to arrange to go first to a
pizza restaurant and then to see a science fiction movie at a
cinema. We consider this to be a task to be achieved and Joe is
guided by the PAA in how to specify this task by first selecting a
template evening-plan from a template library; in this instance, he
selects Pizza and a Movie which has the following events pre-
specified:
(Restaurant
 (typeOfCuisine:Cuisine = Pizza)
 Shows = CinemaShow
 (show:Performance
 (genre:string = "")))

Through interactions with the PAA, Joe can customise this
template and refine it to his particular needs. The PAA can use the
personal profile information of Joe to augment partially specified
events; for example, if Joe does not specify a particular genre of
movie, the PAA may insert a restriction on science fiction movies
from Joe’s personal preferences and also introduce new events,
such as booking taxis to and from each event. The PAA sends the
partially completed evening-plan to the EO for resolution:

(EveningPlan
 :plan (set
 (PlanStep
 :step-id step1
 :related-event (Event :related-to Restaurant)
 :initial-state (State :time "" :location "")
 :end-state (State :time "" :location ""))
 (PlanStep
 :step-id step2
 :related-event (Event :related-to Shows)
 :initial-state (State :time "" :location "")
 :end-state (State :time "" :location "")))
 :preferences (set
 (Preference
 :value (any (sequence ?step1)
 (exists ?x1
 (and (= (value ?step1 step-id) step1)
 (and (= ?x1 (value (value ?step1 related-
event) typeOfCuisine))
 (= ?x1 Pizza)))))
 :weight 0.7)
 (Preference
 :value (any (sequence ?step2)
 (exists ?performance
 (and
 (= (value ?step2 step-id) step2)
 (and
 (= ?performance (value (value ?step2
related-event) show))
 (= (value ?performance genre) Sci-Fi)))))
 :weight 0.7)
 (Preference
 :value (any (sequence ?step1 ?step2)
 (and
 (= (value ?step1 step-id) step1)
 (and (= (value ?step2 step-id) step2)
 (and
 (< (value (value ?step1 end-state) time))
 (value (value ?step2 initial-state)
time)))))))
 :weight 0.9)))
 :reservation-information (set (RI
 :service ""
 :bookingLocator ""))

The EO tries to complete the itinerary by searching the service
finders (which it finds from the DF) for SI-matches to each event.
Where it finds service instances that match, it sends a query
message to the SI to see if a booking can be made. If it can, then
that event in the itinerary is finalised.

If the EO can find each event, then the completed itinerary is
returned to the PAA for final approval by the user. If it cannot, for
example there are no restaurants available for the time chosen by
Joe, then the EO can make minor changes to the itinerary, such as
choosing another time segment or restaurant type. In this instance,
the EO generates multiple alternative-itineraries, which are
prioritized, and Joe can either select the most appropriate one or
modify one and resubmit it to the prototype for resolution. Once
Joe confirms an itinerary, the EO makes all of the necessary
bookings with the SIs. When a booking is made by the EO with
an SI, it makes an actual reservation entry in a table of the
MySQL database; this allows us to maintain a persistent state of
the SIs and also to enhance the realism of the prototype
simulation.

3. CONCLUSIONS
In this paper, we have presented research that relates to the
Agentcities.RTD project, which is part of a worldwide experiment
aiming to use agents in large-scale environments. We have
described a prototype which implements and extends a design for
service composition developed within the Agentcities Network.
The system, an Evening Organiser, allows users to create and
manage plans composed of entertainment events. Our prototype is
one of the first deployments within Agentcities and uses different
technologies and software standards together to build a large-
scale, agent-based service. An important aspect of our prototype is
that it allows users to have the underlying agent system resolve
their tasks asynchronously and autonomously, providing a model
for task delegation.

4. ACKNOWLEDGMENTS
The authors wish to extend their thanks to John Knottenbelt
(Imperial College) for the help in the implementation of the
prototype. The research described in this paper is partly supported
by the EC project Agentcities.RTD (IST-2000-28385). The
opinions expressed in this paper are those of the authors and are
not necessarily those of the EU Agentcities.RTD partners.

5. REFERENCES
[1] Dale, J. April Agent Platform Reference Manual. Fujitsu

Laboratories of America, 2002.
http://sf.us.agentcities.net/aap/

[2] Dale, J. and Ceccaroni, L. Pizza and a Movie: A Case Study
in Advanced Web Services. In Proceedings of the workshop
AAMAS 2002 – W04: Challenges in Open Agent Systems,
Bologna, Italy, 2002.
http://www.nar.fujitsulabs.com/documents/fla-
nartm02-03.pdf

[3] Dale, J., Ceccaroni, L., Zou, J., Agam, A. and Knottenbelt, J.
Fujitsu Evening Organiser Prototype. FLA-NARTM02-13,
Fujitsu Laboratories of America, 2002.
http://www.nar.fujitsulabs.com/documents/fla-
nartm02-13.pdf

[4] DAML Query Language, August 2002. DAML, 2002.
http://www.daml.org/2002/08/dql/

[5] FIPA SL Content Language Specification [FIPA00008],
Foundation for Intelligent Physical Agents, November, 2002.
http://www.fipa.org/specs/fipa00008/

[6] Hendler, J. and McGuinness, D. L. The DARPA Agent
Markup Language, IEEE Intelligent Systems 15 (6), pages
67-73, November/December 2000.
http://www.daml.org/2001/03/daml+oil-
index.html

[7] Hong, T., Concurrent Programming with Webstream.
Imperial College, 2002.

[8] Java Theorem Prover: An Object-Oriented Reasoning
System. Knowledge Systems Laboratory, Stanford
University, 2001.
http://www.ksl.stanford.edu/software/JTP/

[9] McCabe, F. April Programming Language Reference
Manual. Fujitsu Laboratories of America, 2002.
http://www.nar.fujitsulabs.com/april/

[10] McCabe, F., InterAgent Communications Model Reference
Manual. Fujitsu Laboratories of America, 2002.
http://www.nar.fujitsulabs.com/icm/

[11] Negroponte, N., Hospital Corners. In: The Art of Human-
Computer Interface Design, Laurel, B., Ed., pages 347-353,
Addison-Wesley, 1990.

[12] Willmott, S., Dale, J., Burg, B., Charlton, P. and O’Brien, P.
Agentcities: A Worldwide Open Agent Network. In: The
Agentlink Newsletter 8, 13-15, 2001.
http://www.agentcities.org/

* Youyong Zou and Avigail Agam carried out the research related to this paper at Fujitsu Laboratories of America.

