
Implementation and Analysis of

Multi-ALU Processor

Youyong Zou yzou1@cs.umbc.edu
Rong Yu ryu@cs.umbc.edu

Shuang Zeng szeng1@cs.umbc.edu
Kejian Hu khu1@cs.umbc.edu

Abstract

Much of the improvement in computer performance has come from architectural advances
that increase parallelism. Historically, parallelism has been exploited either at the instruction
level (ILP) with a single instruction or by partitioning applications into thousands of
instructions. The ILP in applications is restricted by control flow and data dependencies. For
multicomputers, there is limited coarse thread parallelism at small problem sizes and in
many applications. There is a middle level parallelism that can fill the parallelism gap
between these extremes -- efficient communication and synchronization mechanisms
implemented in the Multi-ALU Processor (MAP) chip. It provides an opportunity for greater
speedup. MAP including a thread creation instruction, register communication.

1 introduction

 Modern computer systems extract parallelism from problems at two extremes of
granularity: instruction-level parallelism (ILP) and coarse-thread parallelism. VLIW and
superscalar processors exploit ILP with a grain size of a single instruction, while
multiprocessors extract parallelism from coarse threads with a granularity of many thousands
of instructions.
The parallelism available at these two extremes is limited. The ILP in application is
restricted by control flow and data dependencies, and the hardware in superscalar designs is
not scalable. Both the instruction scheduling logic and the register file of a superscalar grow
quadratically as the number of execution units is increased. For multicomputers, there is
limited coarse thread parallelism at small problem sizesand in many applications.

 Middle-threads close the parallelism gap between the single instruction granularity of
ILP and the thousand instruction granularity of coarse threads by extracting parallelism with
a granularity of 50-1000 instructions. This parallelism is orthogonal and complementary to
coarse-thread parallelism and ILP. Programs can be accelerated using coarse threads to
extract parallelism from outer loops and large co-routines, middle-threads to extract
parallelism from inner loops and small subcomputations, and ILP to extract parallelism from
subexpressions. As they extract parallelism from different portions of a program,
coarse-threads, middle-threads, and ILP work synergistically to provide multiplicative
speedup.

 These three modes are also well matched to the architecture of modern multiprocessors.
ILP is well suited to extracting parallelism across the execution units of a single processor.
Middle-threads are appropriate for execution across multiple processors at a single node of a

parallel computer where the interaction latencies are on the order of a few cycles.
Coarse-threads are appropriate for execution on different nodes of a multiprocessor where
interaction latencies are inherently 100s of cycles.

 The Multi-ALU Processor (MAP) chip provides three on-chip processors and methods
for quickly communication and synchronizing among them. A thread executing on one
processor can directly write to a register on another processor. Threads synchronize by
blocking on a register that is the target of a remote write or by executing a fast barrier
instruction.

 This report is for cmsc611 project, we will design a MAP DLX-like processor.

2. Multi ALU Technology

2.1 Thread Control

Invoking a thread on a remote processor is typically an expensive operation, requiring
thousands of instructions to set up a stack and initialize system data structures. The MAP
chip implements a fast fork instruction which invokes a thread on a remote cluster by
automatically writing a remote program counter and updating the thread control registers.
The example below starts a thread on cluster 1, using the address 20 as the running start
point.

Fork #1, #20

Combined with the ability to write directly to the registers of the remote cluster, the fork
instruction allows a remote procedure to be started quickly.

2.2 Communication
In coarse grained multiprocessors, communication between threads is exposed to the
application as memory references or messages, both of which require many cycles to
transmit data from one chip to another. In the MAP chip, threads on separate clusters will
communicate through the shared registers. Since the data need not leave the chip to be
transferred from one thread to another, communication is fast and well suited to middle-level
threads.

The MAP chip implements register-register communication between clusters, allowing one
cluster to write directly into the register file of another cluster, via the Cluster Switch.
Register-register transfers are extremely fast, requiring only one more cycle to write to a
remote register than to a local register. The result of any arithmetic operation may be sent
directly to a remote register, without interfering with memory references or polluting the
cache. Since the size of the register file limits the storage for communicated values, register
communication is particularly suited to passing small amounts of data quickly, such as
transferring signals, arguments, and return values between threads.

The following example send the value in register R2 to DLX#1’s register R3.
Send #1, R2,R3

2.3 Synchronization
Barrier instruction: The simplest synchronization mechanism implemented by the MAP is
the cluster barrier instruction cbar. The cluster barrier instruction stalls a thread?s execution
until the threads on the other two clusters have reached a cbar instruction. Threads waiting
for cluster barriers do not spin or consume any execution resources. The cbar instruction is
implemented using six global wires per thread to indicate whether a cbar has been reached,
and whether it has been issued.

3. Implenmentation
3.1 Specification

The specification part of the project report chronicals the implementation of the cpu
inVHDL. Initial assumptions were made from the requirements regarding the instructions.
The following lists these assumptions. for type instructions do:
Result <= For shift register and immediate type instructions assume the amound shifted is
rs2 and the data to be shifted is rs1 or Immediate. The amount shifted is limited to 7 bits.
For all unsigned adds and subtracts assume these instructions do not raise an exception on
overflow.For subtracting use addition with a subtraction layer and CarryIn =1. The sub-
traction layer changes the second operand in this way: Operand2 <= Operand2 xor
CarryInExt; CarryInExt = 111..1, or 232 - 1. Initial assumptions were also made about
JALR, JR, J, and JAL. These were part of the initial project report and will not be reprinted
here.

3.2 MAP design

The three parts of MAP is Clusters, Cluster-switch and Instrument memory. There are three clusters in
our system. Every cluster is a basic DLX chip. So, this MAP has all the feature DLX has.

Instrument memory store all the

instrument used by MAP, every cluster can fetch instrument from it directly, so, compare with
superscalar or VLIW , instrument fetch speed is speedup.

Cluster 0 is the main cluster, that is , it will control the running of other two clusters through fork and
barrier instrument.

Cluster switch will transfer register data between clusters.

Multi-Alu-Processor

Multi-Alu-Processor

3.2 DLX design

DLX Block Diagram:

DLX Block Diagram:

Cluster Control Unit(1):

Cluster Control Unit(1):

Cluster Control Unit(2):

(Interface of the Branch-Target-Buffer)

Cluster Control Unit(3):

(Interface of the Dispatcher)

Interface of the Register-File:

Interface of the Register-File:

Interface of the Instruction-Cache:

3.3 single dlx unit
3.3.1 Control unit

The control was implemented by assigning logical expressions to control signals. The
logical expressions are one or more encoded instructions ORed together. When the logical
expression evaluates to true, the control signal is asserted. In other words, when the input to
the control is the opcode for add any control signal containing the encoding for the add

instruction will be asserted. In actuality a simplification of the instruction set reduces the
number of encodings necessary to represent blocks of instructions.

The rest of the control is done in this way for both the alu and cpu control and the result are
the control entities control and AluControentity control_unit is
 port(IR : in bit_vector(5 downto 0);
 lclock,stall : in bit;
 if_id_reset: out bit;
 c : out bit_vector(7 downto 0));
end control_unit;

3.3.2 register file

Register file consists of a set of registers that can be read or written by suppling two regis-ter
numbers to be accessed.

The main element of the register file is the R-S clocked latch. It is a cross-coupled struc-ture
that stores data signals. The output gets the values of the input when the clock signal is
asserted and set and reset are both desserted.
entity registers is
 port (read0addr,read1addr,writeaddr: in bit_vector(4 downto 0);
 writedata: in bit_vector(31 downto 0);
 write_en,rf_clock,rf_reset: in bit;
 read0data,read1data: out bit_vector(31 downto 0));
end registers;

3.3.3 memory

There are two memory units in our CPU. One is instruction memory and the other is data
memory. Instruction memory and Data memory are built using SRAM.
SRAM is an array of D filp flops. SRAMs have a fixed access time to any datum, though the
read and the write access characteristics are often different. To initiate a read or write acces,
the writeEnable or readEnable should be asserted. The SRAM read access time is usually
specified as the delay from the time that readEnable is asserted and the address lines are
valid until the time that the data are on the output lines.For writes we must supply the data to
be written and the address , as well as the writeEn-able signal to cause the memory to write
the data into the given locations. When the wri-teEnable is asserted the data will be written
into the desognated location. The time to complete a write is the combination of the set_up
times, holds_time, and the writeEnable pulse width.entity data_memory is
data memory is defined in data memory.vhdl:
 port (read0addr,read1addr,writeaddr: in bit_vector(4 downto 0);
 writedata: in bit_vector(31 downto 0);
 write_en,rf_clock,rf_reset: in bit;
 read0data,read1data: out bit_vector(31 downto 0));
end data_memory;
instrument memory is defined in instr_memory.vhdl :
entity instr_memory is
 port (read0addr,read1addr,writeaddr: in bit_vector(4 downto 0);

 writedata: in bit_vector(31 downto 0);
 write_en,rf_clock,rf_reset: in bit;
 read0data,read1data: out bit_vector(31 downto 0));
end instr_memory;

3.3.4 Pipeline DataPath:

The datapath of the pipelined CPU is seperated into five stages as named below:
1. IF: Instruction Fetch.
2. ID: Instruction Decode and Register Fetch.
3. EX: Execution and effective address calculation.
4. Mem: Memory access.
5. WB: Write Back.

In a Pipeline CPU registers are inserted in between each stages of the pipes inoder to save
the previous state.
The components are: if, if_id, id, id_exe, exe, exe_mem, mem,mem_wb,wb.

4. test
 Not availavle now.

5. conclusion

bibliography
1. Exploiting fine-grain thread level parallelism on the MIT multi-ALU processor

Authors: Keckler, Stephen W.; Dally, William J.; Maskit, Daniel; Carter, Nicholas P.; Chang, Andrew;
Lee, Whay S.
Author Affiliation: Stanford Univ.
Source: Conference Proceedings - Annual International Symposium on Computer Architecture, ISCA
Jun 27-Jul 1 1998 1998 Sponsored by: IEEE IEEE Comp Soc p 306-317 0884-7495

2. Effects of explicitly parallel mechanisms on the multi-ALU processor cluster pipeline

Authors: Chang, Andrew; Dally, William J.; Keckler, Stephen W.; Carter, Nicholas
P.; Lee, Whay S. Author Affiliation: Stanford Univ.
Source: Proceedings - IEEE International Conference on Computer Design: VLSI in
Computers and Processors Oct 5-7 1998 1998 Sponsored by: IEEE IEEE p 474-481

3. Dual-ALU CRISC architecture and its compiling technique

Authors: Chou, Hong-Chich; Chung, Chung-Ping; Cheng, Shyi-Chyi
Author Affiliation: Chiao Tung Univ
Source: Computers & Electrical Engineering v 17 n 4 1991 p 297-312 0045-7906

4. Designing multi-ALU microprocessors from LSI slices

Authors: Palagin, A.V.; Slobodnyanyuk, T.F.; Yusifov, S.I.
Source: Cybernetics (English Translation of Kibernetika) v 23 n 5 Sep-Oct 1987 p 658-665
0011-4235
5 .Concurrent event handling through multithreading

Authors: Keckler, Stephen W.; Chang, Andrew; Lee, Whay S.; Chatterjee,
Sandeep; Dally, William J.
Author Affiliation: Univ of Texas at Austin
Source: IEEE Transactions on Computers 48 9 1999 IEEE p 903-916 0018-9340

6. Processor coupling: Integrating compile time and runtime scheduling for parallelism

Authors: Keckler, Stephen W.; Dally, William J.
Source: Conference Proceedings - Annual Symposium on Computer Architecture
May 1992 Sponsored by: IEEE Computer Soc; ACM SIGARCH Publ by IEEE
p202-213

7. M-machine multicomputer

Authors: Fillo, Marco; Keckler, Stephen W.; Dally, William J.; Carter, Nicholas
P.; Chang, Andrew; Gurevich, Yevgeny; Lee, Whay S.
Author Affiliation: Massachusetts Inst of Technology
Source: International Journal of Parallel Programming v 25 n 3 June 1997
Plenum PublCorp p 183-212 0885-7458

8. POWER2 floating-point unit: architecture and implementation

Authors: Hicks, T.N.; Fry, R.E.; Harvey, P.E.
Source: IBM Journal of Research and Development 38 5 Sep 1994 IBM p 525-536
0018-8646

9. Rotary pipeline processors

Authors: Moore, S.; Robinson, P.; Wilcox, S.
Author Affiliation: Univ of Cambridge
Source: IEE Proceedings: Computers and Digital Techniques 143 5 Sep 1996 IEE
p 259-265 1350-2387

10. The MIT Multi-ALU Processor

Authors:Keckler, Stephen W., Dally, William J., Chang, Andrew, Carter, Nicholas P.,
and Lee,
Whay Sing
Source: ftp://cva.stanford.edu/pub/publications/hotchips97.ps.gz

11. Thread Scheduling Mechanims for Multiple Context Parallel Processors

Authors: Fiske, J. Stuart A., PhD Thesis
Source: ftp://cva.stanford.edu/pub/publications/stuart_phd_thesis.ps.Z.

12. A quantitative comparison of parallel computation models

Authors: Ben H. H. Juurlink and Harry A. G. Wijshoff
Source: ACM digital library 1996

