
CMSC661 Team 7


[image: image1.wmf]
      Final Report

TEAM 7: Youyong Zou,  Yun Wan,  Shuang Zeng

Dec. 11, 1999

INDEX

Introduction……..………………………………………………3

Description ..……………………………………………………4

1.Assumption ………………………………………………..4

2.Design of the database …………………………………….4

E-R model…………………………..….………………….4

Relational schemes……………………………………….10

Applications...…………………………………………….11

Interfaces….………………………………………………12

Implementation …………………...……………………………12

Limitation and Improvement…………...………………………45

Appendix…….………………….………………………………46

Introduction

In this project, we are going to design and implement a database application to facilitate the administration of student's application, enrollment, progression and graduation for the Graduate Students Office (GSO) of the Department of Computer Science and Electrical Engineering (CSEE) at University of Maryland Baltimore County (UMBC). The users of this database application are supposed to be staffs from GSO and faculties from CSEE. The assumption is that all of them have a network computer capable of running both of the Web browser (IE or Netscape) and Java applications so that they can easily access this system from their computers individually.

This system consists of a database, applications, and graphical user interfaces. The database is implemented on the University's Oracle Server running Oracle 8 that is an advanced language for this sort of application. Procedures/functions are implemented by SQL, while the applications are written in Java and JDBC. JFC classes are used to develop the graphical user interfaces of the applications. Although the database and the applications are invisible to users, the graphical interfaces can be seen by all the users.

The goal of this project is to provide a flexible tool to faculties and staffs with delicate graphic user interfaces (GUI) and applications to ease the inputs, queries, modifications and maintaining of the students' information. Staffs can take advantages of the database to facilitate the administration of every progress of the students including the application, the enrollment, the graduate assistantship awards, the course registration and their graduation. Faculties can also benefit from it in querying the students' information, reviewing the applicants, and so on. In general, staffs will do most of the modifications to the information in the database, while faculties will basically access the database in read-only mode.

The students' records are set up since the students start their applications for UMBC. First, students fill out the fundamental information about themselves, such as names, SSNs, sexes, birthdays, countries, languages, addresses, phones, emergency phones, emails, research-interests and so on. After confirming the student's application materials are completed, the staffs will input the student's information into the database. Then, the faculties will review the information of students and give out their comments. Finally the committee formed by the faculties are going to make the decision whether or not the student is admitted. Once the student replies the admission and enrolls in UMBC, the system will automatically set up another student record to store every progress of the student in UMBC, such as exam information, thesis defense information, project and course information and graduate assistantship/fellowship information etc. 

A highly intelligent application is developed to automatically carry out most of the modifications according to the progress the students has made, so that it will greatly minimize the amount of the staffs' and faculties' work. For instance, when a student changes his academic or research advisor, all staffs need to do is to input the name or ID of the student, the name of the professor and choose the corresponding application to execute this operation. Staff doesn't need to worry about how to do the modification. In addition, some triggers are designed in order to guarantee that when a specific operation is performed, related actions are performed. For example, after all materials of an applicant are received, the staffs are informed to sent the application of the applicant to next procedure, review. 

Finally, each staff and faculty will have a user name and password to access the database in order to ensure the security of the system. In addition, each staff will be assigned a classification level to constraint his/her access right to the database.
Description

The project consists of three parts which are interfaces, database and applications. They are combined together by JDBC. Users present their requests by clicking on the buttons on the interfaces, the applications sent the requests via JDBC to the database, the requests are executed in the database, results are sent back after the executions finish, and at last the results are displayed in a nice way to users. First, we describe some assumptions that we make in the design of our database. Then we follows the components of this project to describe the design of the project.

1. Assumption

Our design is based on some assumptions, some of which usually satisfy the requirements of the practical applications, and some of which simplify the implementation of the design and don't limit the extension of the design.

· Due to the fact that some students may temporarily have no SSN, so we assign a sequence number to each applicant and is regarded as studentId after the applicant is approved and registered.

· In order to reduce complexities, the design simplifies some of conditions used for triggers. one of them is the condition of completeness of the materials of the applicants, which is simply set as the arrivals of the three recommendation letters, GRE scores and TOEFL scores.

· Some multi-valued attributes such as the authors of the publications is simplified as simple attributes based on the assumption that no query will be executed on the whole of the author strings instead of a part of them. 

· The users of the application are supposed to be staffs, so little security problems are considered.

· The design simplifies the handling of errors by catching them but not instructing users where the errors come from and just let users do what they did over again.

2. Design of the database

E-R Model

[image: image43.png]
[image: image2.wmf]
[image: image3.wmf]
[image: image4.wmf]
[image: image5.wmf]
The E-R diagrams of the database design consist of five parts : Applicant part (Fig 1.), Grad_applicant part (Fig 2.),  Assistant/Fellow part (Fig 3.), Student part (Fig 4.), and Relations part (Fig 5). The legends are illustrated as follows :

Rectangles :                                     entity sets

Ellipses :                                          attributes

Diamonds :                                      relationships

Double ellipses :                              multi-valued attributes

Double rectangles & diamonds :    weak entities and relations

Triangle :                                         isa

The E-R diagrams are straightforward as illustrated , except the following points.

Due to the fact that a lot of international students have no social security number temporarily, we assign a ID to each applicant and later it becomes the student ID after the applicant’s application has been approved and the application registered. The ID assigned is also the primary key of the entity of applicant. There is a great advantage to define ID as the primary key that because almost all queries are based on IDs and its type is simply an integer, the optimization of queries is very easy.

In addition, a lot of attributes are marked as composite ones in order to abstract some complex attributes. Some of them are multi-value attributes and rarely queried in the applications such as the attended institutions of the applicants, and some of them are simple ones and always queried as a whole such as the addresses of the applicants. They are implemented differently as described latterly.

At last, there is a non-obvious attribute in most of the entities and relations which is the sequence number such as student_id. This sequence number is used in many-many relations and weak entities to simplify the primary key of them and ease the maintaining of the integrity of the database by taking advantage of the object reference in Oracle 8.

Relational Schemes

The E-R model can be directly translated to relational model by assigning a table for each entity and relation. Then, by combining some of the tables according to some  common properties of the tables such as the same candidate keys, the final schemes are listed in the following:

· Applicant(id,name,birthday,contact_info,sex,ethnic_heritage,
country,primary_language,birthday,emerg_cont_person,
research_keywords,research_interests)

· additional_info(id,institution,publication,letter,GRE,
GRE_subject,TOEFL,TSE,waived,award)

· faculty_staff(name,ssn,sex,research_topics,is_staff,
username,password) 

· grad_applicant(id,received_date,update_date,dls_date,gls_date,
lls_date,program,degree_sought,semester,year,
is_finance_requested,finance_source,notes,status,
committee_decision,application_decision) 

· review(sequence_n,date,reviewer,applicant_id,recommendation,
match_faculties,undercourses,comments) 

· student(id,program,admitted_date,degree_sought,research_advisor,
academic_advisor,preliminary_committee,defense_committee,
project_committee,status,comp_exam,comp_exam_result,
preliminary_exam,project,defense,PhD_candidate_date,
graduation_date,update_date,xerox_number) 

· Course(course_name,course_number,section_number,semester,year,
instructor,transfer,trans_institution,TA) 

· assistantship_fellowship(student_id,type,step,start_date,
duration,account_number,tuition_credits,stipend,health_benefit,
supervisor,s_evaluation,duties,office,phone,TA_assignment,
TA_test_date,TA_test_score,TA_test,dimiss_date,dimiss_resons) 

· enrollment(sequence_n,course,student_id,grade) 

· graduated_student(student_id,date,degree,first_job,start_date) 

· dismissed_student(student_id,date,reasons)

The reason that the applicant table is partitioned into two parts : applicant and additional_info is that the information in the additional_info are rarely queried and the applicant is queried quite often. So we trade off between the complexity and the speed of the rare queries, consequently, we hopefully enhance the speed of queries which is often done. Similarly, the dismissed student and graduated student are isolated from the student scheme for the same reason.

We choose 3NF to decomposite our schemes because 3NF is not as restrictive as BCNF, while there is lossless join and dependency preservation if we are careful in the decomposition.  

Applications

We provide a set of applications to simulate the entire process of administration of a student from the application to graduation which is supposed to be done by the staffs. The applications will ease staffs’ work by providing friendly interactive interfaces. For example, the interfaces will prevent the staffs to skip some items and mistype some items by displaying some instructive or error information.

In addition, we provide some mechanisms to restrict the processing of an applicant in a right way such as that before all materials of an applicant are received, the faculty can’t review the applicant. Also, The status of an applicant is controlled automatically by our applications.

Interfaces

The interface provided in project is a simple version of a real application. It is by no means a complete and perfect interface, but it is absolutely extensible and applicable. There are menus that provide various applications to users, user guide, and error messages result from something is wrong.

We also provide some queries which cover a wide range of requirements in the application. The display is simplified by using tables and lists. When the queried attributes are simple, the result is displayed in a table which has the best visual effect and is understandable, otherwise, when the queried attributes are multi-valued and composite, the result is displayed in a list. 

Implementation

A lot of new features turn out in Oracle 8 such as object and nested table. These new features give us several options to implement our designs. In this project, we try to take advantage of these new features due to two intentions, one is to learn how to use thes new features, the other one to explore what is the advantages and disadvantages of these new features.

First, all composite attributes are abstracted as a single attributes by define a new user-defined types for each of them. For example, the attribute "address", which includes several attributes: street, city, state and zip, can be abstracted by a single attribute by defining a type named address_t as shown in the following:

CREATE OR REPLACE TYPE address_t AS OBJECT(

       street
      VARCHAR2(30),

       num
      VARCHAR2(10),

       city
      VARCHAR2(15),

       state
      VARCHAR2(15),

       zip_code
      CHAR(5),

       country
      VARCHAR2(30),

MEMBER FUNCTION

get_address RETURN VARCHAR2);

/

The purpose of the member function is to access the values of the address and return it as a single attribute. This idea is based on the assumption that the address is always queried as a whole in practice.

Second, the multi-valued attributes are implemented by nested tables. For example, the attribute GRE is defined as a nested table as shown in the following:

CREATE OR REPLACE TYPE GRE_t AS OBJECT(

       sequence_n
INT,

       ddate
     
DATE,

       verbal
     
INT,

       quantitative  
INT,

       analytical    
INT,

MEMBER FUNCTION

get_GRE RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE GREs_t AS TABLE OF GRE_t;

/

At last, we create the tables for each scheme. We can use the types we defined as the same as the built-in types such as integers. One thing we have to do in the creation of the tables is to designate a name for each of nest tables in the table, this is shown as the follows :

CREATE TABLE additional_info_tab OF additional_info_t (


PRIMARY KEY (id),


FOREIGN KEY (id) REFERENCES applicant_tab(id) ON DELETE CASCADE)


NESTED TABLE institution STORE AS institution_tab (



(PRIMARY KEY (NESTED_TABLE_ID,sequence_n))



ORGANIZATION INDEX COMPRESS)



RETURN AS LOCATOR


NESTED TABLE GRE STORE AS GRE_tab (



(PRIMARY KEY (NESTED_TABLE_ID,sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE GRE_subject STORE AS GRE_subject_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE TOEFL STORE AS TOEFL_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE TSE STORE AS TSE_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE LETTER STORE AS LETTER_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE PUBLICATION STORE AS PUBLICATION_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE award STORE AS awards_tab;

One important thing is to defined the constraints on the tables in order to maintain integrity of the database such as primary key and foreign key. In additon, unique key must be defined when the sequence number is used as primary key in the table. 

CREATE TABLE applicant_tab OF applicant_t (


id 

PRIMARY KEY,


ssn

UNIQUE,


name

NOT NULL,


birthday
NOT NULL,


sex 

NOT NULL )


NESTED TABLE research_keywords STORE AS research_keywords_tab


NESTED TABLE research_interests STORE AS research_interests_tab;

Triggers and check constraints are implemented in the applications, which are described in the user guide section.

In order to speed up the queries, some indices are defined :

CREATE INDEX applicant_ind applicant_tab(id);

CREATE INDEX grad_applicant_ind grad_applicant_tab(id);

CREATE INDEX student_ind student_tab(id);

CREATE INDEX faculty_ind faculty_staff_tab(ssn);

CREATE UNIQUE INDEX course_ind ourse_tab(course_number);

Although there are applications implemented in this project, all of them have the same format except the different SQL statements sent to the database to execute. When a request is received from the interfaces, the application integrate the inputs from users to form a SQL statement, then sent it as a string shown as follows :

//connection to the oracle server

String url = "jdbc:oracle:thin:@bazak.cs.umbc.edu:1521:bazak";

    Connection con = null;

    try {

      con = DriverManager.getConnection(url, userLogin, userPasswd);

      System.out.println("Connected to Oracle.");

    }

    catch (SQLException se ){

      System.out.println("Unable to connect to Oracle.");

      se.printStackTrace();

      System.exit(1);

    }

    //try to execute the statement

    try {

      Statement stmt = con.createStatement();

      ResultSet rs = stmt.executeQuery(statementStr);

      while ( rs.next() ) {

        String name = rs.getString(1);

        System.out.println(name);

      }

      stmt.close();

    }

    catch (SQLException ex ){

      System.out.println("Error while executing query.");

      ex.printStackTrace(System.err);

      System.exit(1);

    }

After the result of the statement is returned to the application, the application display the result in a table or a list. Now, the application is over.  The following we explictly illustrate how to implement the applications.

[image: image6.png]Main menu is a swing program, using Jmenu to build a menu like this.

1. applicant

a) new: add a new applicant into database

swing program is build with JtextField, Jlabel, Jlist.

User input data, organize user’s input into a sql .

Related table: applicant_tab, grad_applicant_tab, additional_info_tab.

[image: image7.png][image: image8.png]
Insert into applicant_tab:

mydb aaa = new mydb();




int id = aaa.get_seq("student_id_seq");




String oper = "INSERT INTO applicant_tab values(applicant_t(";




oper = oper + (new Integer(id)).toString() + ",'";




oper = oper + JTextField1.getText()+"',";




oper = oper + "name_t('"+JTextField9.getText()+"','"+JTextField3.getText()+"','"+JTextField4.getText()+"'),'";

            oper = oper + list4.getSelectedItem()+"','";

            oper = oper + JTextField5.getText()+"','";

            oper = oper + JTextField6.getText()+"','";

            oper = oper + JTextField7.getText()+"',";

            oper = oper + "to_date('"+list3.getSelectedItem()+list1.getSelectedItem()+list2.getSelectedItem()+"','RRMMDD'),";




oper = oper + "NULL,NULL,keywords_t(),interests_t()))";


                System.out.println(oper);




aaa.operate(oper);

//Insert into additional_info_tab:


 

    String oper1 = "INSERT INTO additional_info_tab values(additional_info_t(";




oper1 = oper1 + (new Integer(id)).toString() + ",";




oper1 = oper1 + "institutions_t(),publications_t(),recom_letters_t(),GREs_t(),GRE_subjects_t(),TOEFLs_t(),TSEs_t(),'";




oper1 = oper1 + list9.getSelectedItem()+"',awards_t()))";


                System.out.println(oper1);



   aaa.operate(oper1);
//insert into graduate_info_tab



    String oper2 = "INSERT INTO grad_applicant_tab values(grad_applicant_t(";




oper2 = oper2 + (new Integer(id)).toString() + ",";




oper2 = oper2 + "sysdate,sysdate,NULL,NULL,NULL,'";




oper2 = oper2 + list5.getSelectedItem()+"','";




oper2 = oper2 + list6.getSelectedItem()+"','";




oper2 = oper2 + list8.getSelectedItem()+"','";




oper2 = oper2 + year.getText()+"','";




oper2 = oper2 + list7.getSelectedItem()+"',";




oper2 = oper2 + "NULL,NULL,'incomplete',NULL,NULL))";


                System.out.println(oper2);



    
aaa.operate(oper2);

b) update applicant data: include adding applicant's data and a trigger which change applicant's status if his document is complete.

· [image: image9.png]add a institution : related table: additional_info_tab, because institution is a table of user defined type, here, we use the ( ) operation get out the institution table, then insert into it. 

mydb aaa = new mydb();

        int id = aaa.get_seq("institution_seq");



String abc = "insert into the ( select p.institution from additional_info_tab p where p.id=";



abc = abc + idtextField1.getText() +" ) values( institution_t(";



abc = abc + (new Integer(id)).toString();



abc = abc + ",'"+trchoice1.getSelectedItem()+"','";



abc = abc + cerchoice2.getSelectedItem()+"',";



abc = abc + gpatextField2.getText()+",";



abc = abc + gpascale.getText()+",'";



abc = abc + nametextField1.getText()+"','";



abc = abc + countrytext.getText()+"','";



abc = abc + degree.getSelectedItem()+"','";



abc = abc + textField1.getText()+"','";



abc = abc + textField2.getText()+"',address_t('";



abc = abc + street.getText()+"','";



abc = abc + apt.getText()+"','";



abc = abc + city.getText()+"','";



abc = abc + state.getText()+"','";



abc = abc + zip.getText()+"','";



abc = abc + country.getText()+"')))";



     System.out.println(abc);

                aaa.operate(abc);
· add a publication:

[image: image10.png]
mydb aaa = new mydb();



int id=aaa.get_seq("publication_seq");



String abc = "insert into the ( select p.publication from additional_info_tab p where p.id=";



abc = abc + idtextField1.getText() +") values( publication_t(";



abc = abc+(new Integer(id)).toString()+",'";



abc = abc + ttype.getText()+"','";



abc = abc + title1.getText()+"','";



abc = abc + quthors.getText()+"','January','";



abc = abc + year.getText()+"','";



abc = abc + cites.getText()+"'))";

· [image: image11.png]add a letter

mydb aaa = new mydb();



int id=aaa.get_seq("letter_seq");



String abc = "insert into the ( select p.letter from additional_info_tab p where p.id=";



abc = abc + idtextField1.getText() +") values( recom_letter_t(";



abc = abc+(new Integer(id)).toString()+",";



abc = abc + "name_t('";



abc = abc + firstname.getText()+"','";



abc = abc + middlename.getText()+"','";



abc = abc + lastname.getText()+"'),'";



abc = abc + title1.getText()+"',address_t('";



abc = abc + street.getText()+"','";



abc = abc + apt.getText()+"','";



abc = abc + city.getText()+"','";



abc = abc + state.getText()+"','";



abc = abc + zip.getText()+"','";



abc = abc + country.getText()+"'),sysdate))";



          System.out.println(abc);

                aaa.operate(abc);
· [image: image12.png]add GRE

mydb aaa = new mydb();

        int id = aaa.get_seq("GRE_seq");



String abc = "insert into the ( select p.gre from additional_info_tab p where p.id='";



abc = abc + idtextField1.getText() +"') values( gre_t(";



abc = abc+(new Integer(id)).toString();



abc = abc + ",to_date('"+list3.getSelectedItem()+list1.getSelectedItem()+list2.getSelectedItem()+"','RRMMDD'),";



abc = abc + verbal.getText()+","+quantity.getText()+","+analysis.getText()+"))";

                System.out.println(abc);

                aaa.operate(abc);



aaa.ok_to_review(idtextField1.getText());
· add GRE subject

mydb aaa = new mydb();

        
int id = aaa.get_seq("GRE_subject_seq");


String abc = "insert into the ( select p.gre_subject from additional_info_tab p where p.id=";



abc = abc + idtextField1.getText() +" ) values(gre_subject_t(";



abc = abc+(new Integer(id)).toString();



abc = abc + ",to_date('"+list3.getSelectedItem()+list1.getSelectedItem()+list2.getSelectedItem()+"','RRMMDD'),";



abc = abc + score.getText()+"))";
[image: image13.png]
· [image: image14.png]add toefl

mydb aaa = new mydb();

                int id = aaa.get_seq("TOEFL_seq");



String abc = "insert into the ( select p.toefl from additional_info_tab p where p.id='";



abc = abc + idtextField1.getText() +"') values( toefl_t(";



abc = abc+(new Integer(id)).toString();



abc = abc + ",to_date('"+list3.getSelectedItem()+list1.getSelectedItem()+list2.getSelectedItem()+"','RRMMDD'),";



abc = abc + listen.getText()+","+write.getText()+","+listen.getText()+"))";

                System.out.println(abc);

                aaa.operate(abc);
· add TSE

mydb aaa = new mydb();

        int id = aaa.get_seq("TSE_seq");



String abc = "insert into the ( select p.tse from additional_info_tab p where p.id=";



abc = abc + idtextField1.getText() +") values( tse_t(";



abc = abc+(new Integer(id)).toString();



abc = abc + ",to_date('"+list3.getSelectedItem()+list1.getSelectedItem()+list2.getSelectedItem()+"','RRMMDD'),";

[image: image15.png]

abc = abc + score.getText()+"))";
· [image: image16.png]add award


mydb aaa = new mydb();

        int id = aaa.get_seq("awards_seq");



String abc = "insert into the ( select p.award from additional_info_tab p where p.id=";



abc = abc + idtextField1.getText() +") values( award_t(";



abc = abc+(new Integer(id)).toString();



abc = abc + ",to_date('"+list3.getSelectedItem()+list1.getSelectedItem()+list2.getSelectedItem()+"','RRMMDD'),'";



abc = abc + award1.getText()+"'))";
· TRIGGER  ok_to_review: when user has three recomment letter and has both toefl and gre score, change his status from incomplete to complete, so he can begin review.

public void ok_to_review(String id)

        {

                try {

   Statement stmt = con.createStatement();




int letter_no,toefl_no,gre_no;

String quer = "select count(*) from the ( select p.letter from additional_info_tab p where p.id="+id + " )" ;

ResultSet rs =  stmt.executeQuery(quer);

                        rs.next();




letter_no = rs.getInt(1);




if (letter_no<3)





return;

quer = "select count(*) from the ( select p.toefl from additional_info_tab p where p.id="+id + " )" ;




rs =  stmt.executeQuery(quer);

                        rs.next(); 

                        toefl_no = rs.getInt(1);







if (toefl_no==0)





  return;

quer = "select count(*) from the ( select p.gre from additional_info_tab p where p.id="+id + " )" ;




rs =  stmt.executeQuery(quer);

                        rs.next(); 

                        gre_no = rs.getInt(1);




if (gre_no==0)

                                  return;

quer = "update grad_applicant_tab set status='completed' where id="+id;




 rs =  stmt.executeQuery(quer);

                rs =  stmt.executeQuery("commit");
c) Review

· Add a review into review_tab: related table: review_tab, applicant_tab, before insert review into table, check if this applicant’s status, if his document is incompleted, that is, has no toefl or gre, or has no three recommend letter, cannot review.

mydb aaa = new mydb();



int id=aaa.get_seq("review_seq");



String abc = "insert into review_tab values(review_t(";



abc = abc+(new Integer(id)).toString()+",sysdate,";



abc = abc + "(select ref(po) from faculty_staff_tab po where po.ssn='";



abc = abc + reviewssn.getText()+"') ,( ";



abc = abc + "select ref(po1) from grad_applicant_tab po1 where po1.id=";



abc = abc + appid.getText()+") ,'";



abc = abc + recommend.getText()+"','";



abc = abc + matchfacu.getText()+"','";

[image: image17.png]

abc = abc + undercourse.getText()+"','";




abc = abc + recom.getText()+"'))";
· If this is a applicant's first review, set status "in review', if there is already three reviews,  review is completed, set status to “in committee”, 

public void ok_to_commit(String id)


 {

                try {

 Statement stmt = con.createStatement();

                        int review_no;

String quer = "select count(*) from review_tab  where applicant_id= ( select ref(co) from grad_applicant_tab co where id="+id+")";; 

ResultSet rs =  stmt.executeQuery(quer);

                        rs.next();

                        review_no = rs.getInt(1);

                        if (review_no==1)




{

quer = "update grad_applicant_tab set status='in review' where id="+id;

                        rs =  stmt.executeQuery(quer);




}



  
if (review_no==3)

                        {

quer = "update grad_applicant_tab set status='in committee' where id="+id;

                        rs =  stmt.executeQuery(quer);

                        }

                rs =  stmt.executeQuery("commit");



stmt.close();
d) Decision:

· [image: image18.png]Add committee's decision: related table: applicant_tab, only when there is over three reviews to this applicant, we can have committee decision operation.

mydb aaa = new mydb();



    String oper = "update grad_applicant_tab set committee_decision= committee_decision_t( sysdate, '";



    oper = oper + decision.getSelectedItem()+"','";



    oper = oper + deny.getText()+"','";



    oper = oper + Provisions.getText()+"',";



    oper = oper + "(select ref(po) from faculty_staff_tab po where po.ssn='";



    oper = oper + advisor.getText()  +"'),'";



    oper = oper + waive.getSelectedItem()+"','";



    oper = oper + textField3.getText()+"','";



    oper = oper + choice1.getSelectedItem()+"','";



    oper = oper + choice2.getSelectedItem()+"',";



    oper = oper + amount.getText()+",'";



    oper = oper + duration.getText()+"') where id = ";



    oper = oper + appid.getText();



       System.out.println(oper);



    aaa.operate(oper);
· Send out letter: related table: applicant_tab, send out department’s letter, graduate school’s letter, international office’s letter.

· Add applicant's decision: related table: applicant_tab, only when there are more than three reviews, we can have this decision operation.

mydb aaa = new mydb();



    String oper = "update grad_applicant_tab set application_decision= application_decision_t( sysdate, '";



    oper = oper + choice2.getSelectedItem()+"',to_date('";



    oper = oper + arrivedate.getText() +"','RRMMDD'),defer_request_t(";




if (( choice1.getSelectedItem()).equals("y"))




{



    oper = oper +"'"+choice3.getSelectedItem()+"','";



    oper = oper + choice4.getSelectedItem()+"','";



    oper = oper + choice1.getSelectedItem()+"',to_date('";



    oper = oper + textField1.getText()+"','RRMMDD')),'";




}




else




{



oper = oper + "NULL,NULL,'n',NULL),'";




}



    oper = oper + amount.getText()+"'), status = 'closed' where id=";



    oper = oper + appid.getText();



       System.out.println(oper);

[image: image19.png]

    aaa.operate(oper);
2. Enrolled

a) Enroll: After applicant is accepted, he must enrolled first. After enrolled, he change from a applicant to a student.

mydb aaa = new mydb();

        String abc = "insert into student_tab values( sstudent_t(";



abc = abc + studentid.getText() +",'";
[image: image20.png]


abc = abc + choice1.getSelectedItem()+"',to_date('";



abc = abc + sectionnumber.getText()+"','RRMMDD'),'";



abc = abc + choice2.getSelectedItem()+"',";



abc = abc + "(select ref(fo) from faculty_staff_tab fo where fo.ssn='";



abc = abc + researchadvisor.getText()+"') , ";



abc = abc + "( select ref(fo) from faculty_staff_tab fo where fo.ssn='";



abc = abc + academicadvisor.getText()+"') , committee_t(),committee_t(),committee_t(),'";



abc = abc + choice3.getSelectedItem()+"',comp_exams_t(),NULL,NULl,NULL,null,NULL,NULL,sysdate,";



abc = abc + xerox.getText()+"))";
b) Change advisor: related table: student_tab, faculty_staff_tab. The input faculty ssn must be valid ssn in faculty_staff_tab. If the input field is null,

there will be no update operation.

[image: image21.png]
String abc = "update student_tab set research_advisor = ( ";




abc = abc + "select ref(fo) from faculty_staff_tab fo where fo.ssn='";



abc = abc + newresearch.getText()+"'), academic_advisor= (";




abc = abc + "select ref(fo) from faculty_staff_tab fo where fo.ssn='";



abc = abc + newacademic.getText()+"') where id=";




abc = abc + studentID.getText();

[image: image22.png]c) Change Status: change student’s status. Include the status that can be changed by input, there is other status value not listed here, include dismissed, graduated, it will be changed automaticly when student is dismissed or graduated.

mydb aaa = new mydb();

        String abc = "update student_tab set status='";

        abc = abc + choice1.getSelectedItem()+"'  where id=";

        abc = abc + studentid.getText();

        System.out.println(abc);

        aaa.operate(abc);
[image: image23.png]e) Take course: 

mydb aaa = new mydb();



int id=aaa.get_seq("enrollment_seq");



String abc = "insert into enrollment_tab values(enrollment_t(";



abc = abc+(new Integer(id)).toString()+",";



abc = abc + "( select ref(co) from course_tab co where co.course_number='";



abc = abc + coursenumber.getText()+"' and co.yyear='";



abc = abc + year.getText()+"' and co.section_number='";



abc = abc + sectionnumber.getText()+"' and co.semester='";



abc = abc + choice2.getSelectedItem()+"')," ;



abc = abc + "( select ref(so) from student_tab so where so.id=";



abc = abc + studentid.getText()+") ,'" ;



abc = abc + choice1.getSelectedItem()+"'))";
[image: image24.png]f) Organize a Committee : there is three kinds committee: preliminary, defense(master/Ph.D), project.

You must organize a committee before you have any defense. A committee with at least three member is a valid committee. 

mydb aaa = new mydb();

        int id = aaa.get_seq("committee_seq");

        int indexvalue = committeetype.getSelectedIndex();

        String abc = "";

        if (indexvalue==0)

        {



abc = "insert into the ( select p.preliminary_committee from student_tab p where p.id=";



abc = abc + studentid.getText() +") values( committee_member_t(";



abc = abc+(new Integer(id)).toString()+",";



abc = abc + "(select ref(fo) from faculty_staff_tab fo where fo.ssn='";



abc = abc + facultyssn.getText()+"'),'";



abc = abc + role.getSelectedItem()+"'))";



}



if (indexvalue==1)

        {



abc = "insert into the ( select p.defense_committee from student_tab p where p.id=";



abc = abc + studentid.getText() +") values( committee_member_t(";



abc = abc+(new Integer(id)).toString()+",";



abc = abc + "(select ref(fo) from faculty_staff_tab fo where fo.ssn='";



abc = abc + facultyssn.getText()+"'),'";



abc = abc + role.getSelectedItem()+"'))";



}



 if (indexvalue==2)

        {



abc = "insert into the ( select p.project_committee from student_tab p where p.id=";



abc = abc + studentid.getText() +") values( committee_member_t(";



abc = abc+(new Integer(id)).toString()+",";



abc = abc + "(select ref(fo) from faculty_staff_tab fo where fo.ssn='";



abc = abc + facultyssn.getText()+"'),'";



abc = abc + role.getSelectedItem()+"'))";



}
g) Defense

[image: image25.png]
mydb aaa = new mydb();

        int indexvalue = committeetype.getSelectedIndex();

        String abc = "";

        if (indexvalue==0)

        {



 abc = "update student_tab set preliminary_exam=preliminary_exam_t('";

        abc = abc + defensetitle.getText()+"','";

        abc = abc + aabstract.getText()+"','";

        abc = abc + choice1.getSelectedItem()+"',to_date('";

        abc = abc + defensedate.getText()+"','RRMMDD'))";


abc = abc + " where id=" + studentid.getText() ;



}



if (indexvalue==1)

        {



abc = "update student_tab set defense=defense_t('";

        abc = abc + grade.getSelectedItem()+"','";

        abc = abc + defensetitle.getText()+"','";

        abc = abc + aabstract.getText()+"',to_date('";

        abc = abc + defensedate.getText()+"','RRMMDD'),'";

        abc = abc + choice1.getSelectedItem()+"')";


abc = abc + " where id=" + studentid.getText() ;



}



if (indexvalue==2)

        {



abc = "update student_tab set project=project_t('";

        abc = abc + defensetitle.getText()+"','";

        abc = abc + aabstract.getText()+"',to_date('";

        abc = abc + defensedate.getText()+"','RRMMDD'))";


abc = abc + " where id=" + studentid.getText() ;



}

[image: image26.png]h) Comprehensive Exam

· Take a comprehensive exam

mydb aaa = new mydb();

        int id = aaa.get_seq("comp_exam_seq");



String abc = "insert into the ( select p.comp_exam from student_tab p where p.id=";



abc = abc + studentid.getText() +") values( comp_exam_t(";



abc = abc+(new Integer(id)).toString()+",'";



abc = abc + subject.getText()+"',to_date('";



abc = abc + takedate.getText()+"','RRMMDD'),";



abc = abc + score.getText()+",'";



abc = abc + choice1.getSelectedItem()+"'))";

[image: image27.png]
· Finished all comprehensive Exam.: collect the comprehensive exam result.

mydb aaa = new mydb();

       
String abc = "update  student_tab set comp_exam_result='";

       
abc = abc + choice2.getSelectedItem()+"' where id=";

       
abc = abc + studentid.getText();
i) Assistantship

· [image: image28.png]assign a assistantship

mydb aaa = new mydb();



String abc = "insert into assistantship_fellowship_tab values( assistantship_fellowship_t(";



abc = abc + studentid.getText()+",'";



abc = abc + type.getSelectedItem()+"',";



abc = abc + step.getSelectedItem()+",to_date('";



abc = abc + startdate.getText()+"','RRMMDD'),'";



abc = abc + duration.getText()+"','";



abc = abc + accountnumber.getText()+"',";



abc = abc + tuitioncredit.getText()+",";



abc = abc + stipend.getText()+",health_benefit_t('";



abc = abc + healthplan.getText()+"',";



abc = abc + healthcost.getText()+"),";



abc = abc + "(select ref(co) from  faculty_staff_tab co where co.ssn='";



abc = abc + supervisor.getText()+"'), NULL,'";



abc = abc + duties.getText()+"','";



abc = abc + office.getText()+"','";

[image: image29.png]

abc = abc + phone.getText()+"',TA_ASSIGNMENT_T(),TA_TESTS_T(),NULL,NULL))";

· assign TA: you must assign this student a assistantship before assign a TA, here, TA is a kind of assistantship.

// to do: code goes here.



mydb aaa = new mydb();

        int id = aaa.get_seq("TA_seq");



String abc = "insert into the ( select p.ta_assignment from assistantship_fellowship_tab p where p.student_id=";



abc = abc + studentid.getText() +") values( ta_info_t(";



abc = abc+(new Integer(id)).toString()+",";



abc = abc + officehour.getText()+",NULL,";



abc = abc + "( select ref(co) from course_tab co where co.course_number='";



abc = abc + coursenumber.getText()+"' and co.yyear='";



abc = abc + year.getText()+"' and co.section_number='";



abc = abc + sectionnumber.getText()+"' and co.semester='";



abc = abc + choice1.getSelectedItem()+"')," ;



abc = abc + textField1.getText()+"))";

        System.out.println(abc);

        aaa.operate(abc);



String abc1 = "update course_tab set ta= ( select ref(co) from assistantship_fellowship_tab co where co.ttype='TA' and co.student_id=";



abc1 = abc1 + studentid.getText() +") where course_number='";



abc1 = abc1 + coursenumber.getText()+"' and yyear='";



abc1 = abc1 + year.getText()+"' and section_number='";



abc1 = abc1 + sectionnumber.getText()+"' and semester='";



abc1 = abc1 + choice1.getSelectedItem()+"'";

   System.out.println(abc1);

        aaa.operate(abc1);
· [image: image30.png]TA test

mydb aaa = new mydb();



int id = aaa.get_seq("TA_test_seq");

        String abc = "insert into the ( select p.ta_test from assistantship_fellowship_tab p where p.student_id=";



abc = abc + studentid.getText() +" ) values( ta_test_t(";



abc = abc+(new Integer(id)).toString()+",to_date('";



abc = abc + takedate.getText()+"','RRMMDD'),";



abc = abc +score.getText()+"))";

· [image: image31.png]dismiss TA
mydb aaa = new mydb();

        String abc = "update assistantship_fellowship_tab set dimiss_date=to_date('";


    abc = abc +takedate.getText()+"','RRMMDD'), dimiss_reasons='";


    abc = abc + reason.getText()+"' where student_id=";


    abc = abc + studentid.getText();
· [image: image32.png]evaluate a assistantship
mydb aaa = new mydb();

       
String abc = "update assistantship_fellowship_tab set s_evaluation= evaluation_t(to_date('";


    abc = abc +date.getText()+"','RRMMDD'),";


    abc = abc + score.getText()+",'";


    abc = abc + comment.getText()+"') where student_id=";


    abc = abc + studentid.getText();
[image: image33.png]j) Dismiss student: add student into dismissed student table and change his status to dismissed.

mydb aaa = new mydb();

        String abc = "insert into dismissed_student_tab values( dismissed_t(";



abc = abc + studentid.getText() +", to_date('";



abc = abc +takedate.getText()+"','RRMMDD'),'";



abc = abc + reason.getText()+"'))";
k) student graduate: add student into graduated table and change his status to graduated.

mydb aaa = new mydb();

[image: image34.png]        String abc = "insert into graduated_student_tab values( graduated_t(";



abc = abc + studentid.getText() +", to_date('";



abc = abc + takedate.getText()+"','RRMMDD'),'";



abc = abc + choice2.getSelectedItem()+"','";



abc = abc + firstjob.getText()+"',to_date('";



abc = abc + textField1.getText()+"','RRMMDD')))";
l) Other update

· add Publication

mydb aaa = new mydb();



int id=aaa.get_seq("publication_seq");



String abc = "insert into the ( select p.publication from additional_info_tab p where p.id=";

[image: image35.png]

abc = abc + studentid.getText() +") values( publication_t(";



abc = abc+(new Integer(id)).toString()+",'";



abc = abc + ttype.getText()+"','";



abc = abc + title1.getText()+"','";



abc = abc + quthors.getText()+"','January','";



abc = abc + year.getText()+"','";



abc = abc + cites.getText()+"'))";
· add award

mydb aaa = new mydb();

        int id = aaa.get_seq("awards_seq");



String abc = "insert into the ( select p.award from additional_info_tab p where p.id=";
[image: image36.png]


abc = abc + studentid.getText() +") values( award_t(";



abc = abc+(new Integer(id)).toString();



abc = abc + ",to_date('"+list3.getSelectedItem()+list1.getSelectedItem()+list2.getSelectedItem()+"','RRMMDD'),'";



abc = abc + award1.getText()+"'))";
3. Department

a) add a new course: add a course into course_tab, the faculty is reference to faculty_staff_tab, so it must be a valid ssn. The TA is null when add new course. When you assign a TA for the course, The TA field in course_tab will be updated. So the correct order is add course first, then assign a student a assistantship, then assign this student a TA for this course.

String abc = "insert into course_tab values( course_t('";

                abc = abc + coursename.getText()+"','";

                abc = abc + coursenumber.getText()+"','";

                abc = abc + sectionnumber.getText()+"','";

                abc = abc + choice3.getSelectedItem()+"','";

                abc = abc + year.getText()+"',";



abc = abc + "( select ref(po) from faculty_staff_tab po where po.ssn='";



abc = abc + instructor.getText() + "'), NULL))";

                System.out.println(abc);

                mydb ddd = new mydb();

[image: image37.png]                ddd.operate(abc);
b) [image: image38.png]add a faculty

String abc = "insert into faculty_staff_tab values(faculty_staff_t( name_t('";

                abc = abc + JTextField2.getText()+"','";

                abc = abc + JTextField3.getText()+"','";

                abc = abc + JTextField4.getText()+"'),'";

                abc = abc + JTextField1.getText()+"','";



abc = abc + list4.getSelectedItem()+"', keywords_t(),'";



abc = abc + list1.getSelectedItem() + "','";



abc = abc + JTextField5.getText()+"','";



abc = abc + JPasswordField1.getText()+"'))";

                System.out.println(abc);

                mydb ddd = new mydb();

                ddd.operate(abc);



String abc1 = "insert into the ( select po.RESEARCH_TOPICS from faculty_staff_tab po where po.ssn='";



abc1 = abc1 +  JTextField1.getText()+"' ) values ( '";



abc1 = abc1 + JTextArea1.getText()+"')";
c) [image: image39.png]delete a faculty

String abc = "delete faculty_staff_tab where ssn='";

                abc = abc + ssn.getText()+"'";

                System.out.println(abc);
4. Query 

A set of ten queries is implemented, which covers a wide range of requirements the users of the database. The infomation returned by the database as the results of he queries is displayed by tables and lists. Tables are used to display regular information such as single-valued attributes, and lists are good at displaying multi-valued and long attributes. 

1. [image: image40.png][image: image41.png]Applicant Query : It is used to query all basic information of an applicant, such as address, awards, publications, and so on.The result is shown as a list.

  2. Enrolled Student Query : It is designed to query information of an student, such as program, research advisor. The result is shown as a list because the are a bunch of information in it.

  3. Applicant Status Query : It is designed to query the status of the applicants. Users can query the information by inputing some personal information of the applicant(s) or none for all students.

  4. Assistant Query : It is used to query the information of an assistant (or assistants), which includes type, step, amount of stipend, account and office.

  5. Classes Query : It is used to query the information of a course (or courses), which includes instructor, TA, TA office and so on

  6. Student-Class Query : It is used to query which studnets are some courses.

  7. Review Query : It is designed to query the information of review of professors to some students.

  8. Faculty Query : It is designed to query the information of a faculty (or faculties).

  9. Dismissed Student Query : It is designed to query the information of a dismissed student (or students).

  10. Student Status Query  : It is designed to query the status of a student or students.

User Guide

This database provide a lot of interactive interfaces to facilitate administration of students from application, enrollment, to graduation. In each progress of student, the database keep track of the status of the students. In addition, the database provides a lot of mechanisms to prevent from mistyping and events in inappropriate order. For example, an applicant can only register a course after his/her application is admitted.

The following is the structure of the graphical user interface:

[image: image42.png]
Application

Information about the application, after the application has approved, this application information will be inserted into enrolled.

· New application: receive new application materials from graduate school, staffs insert the application information into the applicant table.

· Update application: after receiving test scores from ETS, certificates from institutions, and recommendation letters from references, if there are three recommendation letters for the student and the test and certificate documents are complete, change the student's status in the application to complete, otherwise incomplete.

· Review: add faculty reviews into the review database.

· Decision: committee’s decisions, applications' replies and defer decisions, send out graduated school, department and international school’s letter.

Enrolled

Information about the enrolled students.

· Enroll: student enrolled as a full-time student or part-time student

· Change status: change the status of student, status maybe full-time or part-time.

· Change advisor: a student changes academic or research advisor

· Take Class: a student takes a class

· Committee: organize a committee for a student’s defense.

· Defense: Project’s defense, Thesis’s defense, and PH.D preliminary exam.

· Comprehensive Exam: student take comprehensive exam.

· Assistantship: a student receives an assistantship, including 

TA/RA/GRA/Fellow/Scholar/other.

· Dismissed: students dismissed from the program or the assistantship.

· Graduate: student graduated.

· Other Update: update students' information, such as Xerox numbers, publications and awards.

Query

All of the query operations, incurred by faculties or staffs.

· Application: query a specified applicant’s information

· Enrolled: query an enrolled student’s information

· Completed: Query all of the applicants with complete materials received, staff will send the materials of those applicants to faculties for review.

· Applicant status: query all the applicant with the same status.

· Assistantship List: query all of the students, which have assistantship.

· Class: query the information about the classes.

· Student Class: query all of the students who enrolled in a specified class.

· Review : query the information of a review

· Dismissed : query all of the dismissed students 

· Student status : query all enrolled student with the same status.

Department

Operated by the faculties who have no direct relation with students.

· Class: have a new class, assign an instructor for the class.

· Faculty: update faculties' information, add a new faculty or delete a faculty.

The attributes of each entities and relationship is listed as follows:

Applicant: includes basic information of all of the applicants that seek admission in a program.

studentid: int

name: composite (first name, middle name, last name)

ssn: char[9]  social security number

sex: varchar2[6]  male/female

birthday: date 

ethnic_heritage : varchar2[20] 

country: varchar[40]  

primary_language: varchar[20] ,select one from a language list

address : composite ( street, number, city, state, zipcode, country)

contact_info : composite  (home_phone, work_phone, email)

emeg_cont_person : composite ( name, relation, address, phone, email ) : emergency contact person,

research_keyword: varray of varchar[30]

research_interest: varray of varchar[100]

institutions : 

institution: table of (trans_received, certificate_received, GPA, GPA_scale, name, country, degree, major, minor, address)

publications :

publication : varray of (type, title, authors, month, year, citation)

recommendation_letters :

letter: varray of (name, title, address, date)

standardized_tests : includes four tables for TOEFL, GRE, GRE_subject, and TSE

TOEFL : table of (date, listening, writing, comprehension)

GRE : table of (date, verbal, quantitive, analytical

GRE_subject : table of (date, score)

TSE : table of (date, score)

awards:

award: varray of (date, description)

faculty_staff: information about faculty and staff.

name: composite (first name, middle name, last name)

ssn: char[9] 

sex: varchar[6]  male/female

research_topic: varray of varchar[30]

is_staff: boolean, TRUE if he is staff

username: varchar[10] username to access system

password: varchar[10] password to protect the access security

course: information about class

number: varchar[10]

name: varchar[20]

year: varchar[4]

semester: varchar[10], format like: fall/99, spring/00

is_transfer : char[1] Y or N

transfer_instition : varchar[30]

graduate_applicant: a applicatant for graduate program

studentid: int

received_date:date

program: varchar[2]  ,CS or EE

degree_sought: varchar[3],ms/phd

semester: varchar[10]

year: varchar[4]

finance_requested: boolean

finance_source: varchar[20]

status: varchar[10] incomplete/completed/in review/ in committee/closed/unknown

update_date: date

sent_date: includes (Dlsdate: date  department letter send date

    Glsdate: date graduate school letter send date

 Ilsdate: date international letters send date)

notes: varchar[50]

committee_decision: composite (date, decision, deny_reason, provisions, assigned_advisor, tests_waived, under_courses, is_assistant, type, amount, duration)

application_decision: composite (date, decision, arrival_date, defer_date, defer_decision,defer_semester, defer_year, notes)

assistant/fellow: information about assistantship, include TA/RA/GRA/fellowship/scholarship/other

studentid: int

type: int  TA/RA/GRA/fellowship/scholarship/other=1/2/3/4/5

step: int

level: int

start_date: date

account_number: varchar[20]

credit_remission: int

stipend_amount: int

health_benefit_plan: varchar[20]

health_benefit_cost: int

supervisor: varchar[9], faculty’s ssn

supervisor_evaluation_date: date

supervisor_evaluation_score: int

supervisor_evaluation_comments: varchar[50]

duties:varchar[30]

office: varchar[10]

office_phone: varchar[15]

TA_test: varray of (date, score)

dismissed_date: date

dismissed_reason: varchar[40]

student: information about the enrolled student.

studentid: int

program: varchar[2]

admitted_date: date

degree_sought: int, 

status: int ,date/full/part/absence/withdrawn/dismissed/graduate=1/2/3/4/5/6/7/

phd_candidacy_date: date

graduate_date: date

xerox_number: int

update_date: date

comp_exam_result: int fail/pass MS/pass PHD=1/2/3

comp_exam: table of (subject, date, score, grade)

defense: composite (thesis, title,abstract, date, result)

preliminary_exam: composite(title, abstract, grade, date)

comp_exam_committee: table of (faculty, role)

preliminary_exam_committee: table of (faculty, role)

defense_committee: table of (faculty, role)

dismissed_student:

student_id: int

reasons: varchar[30]

dismiss_date: date

graduated_student:

student_id: int

graduation_date: date

degree: varchar[10]

first_job: varchar[30]

start_date:date

review: review from a faculty, matching faculty is decided by matching of the application’s interest and faculties' research topics.

studentid: int

faculty_ssn: varchar[9]

review_date: date

recommendation: varchar[40]

matching_faculty_ssn: varchar[9]

under_course_required: varchar[50]

comments: varchar[50]

takes_courses: student take a class.

studentid: int

course_name: varchar[20]

section_number: varchar[10]

semester: varchar[6]

year: varchar[4]

grade: varchar[2], A/B/C/D/F/P/AU/I/W

teach:

faculty_ssn: char[9]

course_name: varchar[20]

section_number: varchar[10]

semester: varchar[6]

year: varchar[4]

assist:

student_id: int

faculty_ssn: char[9]

course_name: varchar[20]

section_number: varchar[10]

semester: varchar[6]

year: varchar[4]

effort_level: int

instructor_evaluation: composite (date, score, comments)

supervisor:

faculty_ssn: char[9]

student_id : int

evalution: composite (date, score, comments)

reseach_advisor:

faculty_ssn: char[9]

student_id : int

evaluation: composite (date, score, comments)

academic_advisor:

faculty_ssn: char[9]

student_id : int

evalution: composite (date, score, comments)

Limitation and Improvement

The biggest limitation of this project is that the user-defined types are hard to modify after it has been used in a table. This is come out of our expectiation at the end of the project. In the near future, it seems that Oracle won’t have any mechanism to modify the user-defined type that is used in a table. So the best way to avoid this problem currently is to use the user-defined type carefully. If you are sure the type you defined won’t be modified in the future, that will be fine. Otherwise, don’t use it.

      In our system, we define many type and organize the string in java and run execStatement. In order to get the field in a user defined type, we write many methods for those types. That is, we put all the user defined type work in oracle. The better way to use oracle user defined type in java is define a java class for every type, then you can operate the type in java directly.

     Our system is still a pure java application. If we need to change it to web application, we must change all the java class into applet extend. There is two problems with web application. First is applet ‘s security limition.  There is three ways suggested by oracle to do it: Use oracle connect manager, put web server and oracle server in the same machine, use java signature.  Actually there is another way to do it, use RMI, because RMI has no security limit. We can run rmi server in one machine, then write a java applet to communication with rmi server. Second problem we meet is java plug in 2.0. To visit swing web page in netscape, you must install java plug in 2.0 in netscape. Because we cannot install java plug in 2.0 in cs’s machine, we have to write java application. 

Appendix :  SQL Statements

CREATE OR REPLACE TYPE name_t AS OBJECT(


first
VARCHAR2(20),


middle
VARCHAR2(20),


last
VARCHAR2(20),

MEMBER FUNCTION

get_name RETURN VARCHAR2,

MEMBER FUNCTION

get_first RETURN VARCHAR2,

MEMBER FUNCTION

get_middle RETURN VARCHAR2,

MEMBER FUNCTION

get_last RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY name_t AS 

MEMBER FUNCTION get_name RETURN VARCHAR2 IS


 BEGIN


 RETURN first||' '||middle||' '||last;


 END;

MEMBER FUNCTION get_first RETURN VARCHAR2 IS


 BEGIN


 RETURN first;


 END;

MEMBER FUNCTION get_middle RETURN VARCHAR2 IS


 BEGIN


 RETURN middle;


 END;

MEMBER FUNCTION get_last RETURN VARCHAR2 IS


 BEGIN


 RETURN last;


 END;

END;

/

CREATE OR REPLACE TYPE BODY address_t AS 

MEMBER FUNCTION get_address RETURN VARCHAR2 IS

       tmp VARCHAR2(120);


 BEGIN


 tmp := num||' '||street||' '||city||' '||state||' '



||zip_code||' '||country;


 RETURN tmp;


 END;

END;

/

CREATE OR REPLACE TYPE contact_t AS OBJECT(


home_address
address_t,


work_address
address_t,


home_phone
VARCHAR2(15),


work_phone
VARCHAR2(15),


email

VARCHAR2(30),

MEMBER FUNCTION

get_contact_info RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY contact_t AS 

MEMBER FUNCTION get_contact_info RETURN VARCHAR2 IS

       tmp VARCHAR2(300);

       BEGIN

       tmp := 'Home Address :  ' || home_address.get_address()||'|';

       tmp := tmp||'Work Address :  ' || work_address.get_address()||'|';

       tmp := tmp||'Home Phone   :  ' || home_phone || '|';

       tmp := tmp||'Work Phone   :  ' || work_phone || '|';

       tmp := tmp||'Email        :  ' || email || '|';

       return tmp;

       END;

END;

/

CREATE OR REPLACE TYPE emergence_t AS OBJECT(


name

name_t,


relation
VARCHAR2(20),


address

address_t,


phone

VARCHAR2(15),


email

VARCHAR2(30),

MEMBER FUNCTION

get_emergence_info RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY emergence_t AS 

MEMBER FUNCTION get_emergence_info RETURN VARCHAR2 IS

       tmp VARCHAR2(300);

       BEGIN

       tmp := 'Name     : |' || name.get_name() || '|';

       tmp := tmp || 'Address  : |' || address.get_address() || '|';

       tmp := tmp || 'Relation : |' || relation || '|';

       tmp := tmp || 'Phone    : |' || phone || '|';

       tmp := tmp || 'Email    : |' || email || '|';

       return tmp;

       END;

END;

/

CREATE OR REPLACE TYPE recom_letter_t AS OBJECT(

       sequence_n INT,

       name
name_t,

       title
VARCHAR2(20),

       address
address_t,

       ddate
DATE,

MEMBER FUNCTION

get_letter RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY recom_letter_t AS 

MEMBER FUNCTION get_letter RETURN VARCHAR2 IS

       tmp VARCHAR2(300);

       BEGIN

       tmp :=        'Name     : |' || name.get_name() || '|';

       tmp := tmp || 'Title    : |' || title || '|';

       tmp := tmp || 'Address  : |' || address.get_address() || '|';

       tmp := tmp || 'Date     : |' || ddate || '|'||'|';

       RETURN tmp;

       END;

END;

/

CREATE OR REPLACE TYPE recom_letters_t AS TABLE OF recom_letter_t;

/

CREATE OR REPLACE TYPE publication_t AS OBJECT(

       sequence_n int,

       ttype
VARCHAR2(20),

       title
VARCHAR2(20),

       authors
VARCHAR2(50),

       mmonth
VARCHAR2(10),

       yyear
VARCHAR2(4),

       cites
VARCHAR2(50),

MEMBER FUNCTION

get_publication RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY publication_t AS 

MEMBER FUNCTION get_publication RETURN VARCHAR2 IS

       tmp VARCHAR2(300);

       BEGIN

       tmp :=        'Type     : |' || ttype || '|';

       tmp := tmp || 'Title    : |' || title || '|';

       tmp := tmp || 'Authors  : |' || authors || '|';

       tmp := tmp || 'Date     : |' || mmonth || yyear ||'|';

       tmp := tmp || 'Cites    : |' || cites || '|'||'|';

       RETURN tmp;

       END;

END;

/

CREATE OR REPLACE TYPE publications_t AS TABLE OF publication_t;

/

CREATE OR REPLACE TYPE institution_t AS OBJECT(

       sequence_n
INT,

       trans_received
CHAR(1),

       certi_received
CHAR(1),

       GPA

NUMBER(2,1),

       GPA_scale
NUMBER(2,1),

       name

VARCHAR2(30),

       country

VARCHAR2(30),

       degree

VARCHAR2(5),

       major

VARCHAR2(30),

       minor

VARCHAR2(30),

       address

address_t,

MEMBER FUNCTION

get_institution RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY institution_t AS 

MEMBER FUNCTION get_institution RETURN VARCHAR2 IS

       tmp VARCHAR2(300);

       BEGIN

       tmp :=        'Name
     : ' || name  || '|';

       tmp := tmp || 'Degree         : ' || degree || '|';

       tmp := tmp || 'Major          : ' || major || '|';

       tmp := tmp || 'Minor          : ' || minor || '|';

       tmp := tmp || 'Transcript     : ' || trans_received || '|';

       tmp := tmp || 'Certificate    : ' || certi_received || '|';

       tmp := tmp || 'GPA            : ' || GPA || '|';

       tmp := tmp || 'GPA_sclae      : ' || GPA_scale || '|';

       tmp := tmp || 'Address        : ' || address.get_address() || '|';

       tmp := tmp || 'Country        : ' || country || '|';

       RETURN tmp;

       END;

END;

/

CREATE OR REPLACE TYPE institutions_t AS TABLE OF institution_t;

/

CREATE OR REPLACE TYPE GRE_t AS OBJECT(

       sequence_n
INT,

       ddate
     
DATE,

       verbal
     
INT,

       quantitative  
INT,

       analytical    
INT,

MEMBER FUNCTION

get_GRE RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY GRE_t AS 

MEMBER FUNCTION get_GRE RETURN VARCHAR2 IS


 BEGIN


 RETURN ddate ||' '||verbal||' '||quantitative||' '||analytical;


 END;

END;

/

CREATE OR REPLACE TYPE GRE_subject_t AS OBJECT(

       sequence_n    INT,

       ddate
     DATE,

       score
     INT,

MEMBER FUNCTION

get_GRE_subject RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY GRE_subject_t AS 

MEMBER FUNCTION get_GRE_subject RETURN VARCHAR2 IS


 BEGIN


 RETURN ddate ||'
'|| score;


 END;

END;

/

CREATE OR REPLACE TYPE TOEFL_t AS OBJECT(

       sequence_n
INT,

       ddate
     
DATE,

       listening     
INT,

       writing
     
INT,

       comprehension 
INT,

MEMBER FUNCTION

get_TOEFL RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY TOEFL_t AS 

MEMBER FUNCTION get_TOEFL RETURN VARCHAR2 IS


 BEGIN


 RETURN ddate ||' '||listening ||' '||writing||' '||comprehension;


 END;

END;

/

CREATE OR REPLACE TYPE TSE_t AS OBJECT(

       sequence_n
INT,

       ddate
        DATE,

       score
        INT,

MEMBER FUNCTION

get_TSE RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY TSE_t AS 

MEMBER FUNCTION get_TSE RETURN VARCHAR2 IS


 BEGIN


 RETURN ddate ||' '||score;


 END;

END;

/

CREATE OR REPLACE TYPE GREs_t AS TABLE OF GRE_t;

/

CREATE OR REPLACE TYPE TOEFLs_t AS TABLE OF TOEFL_t;

/

CREATE OR REPLACE TYPE GRE_subjects_t AS TABLE OF GRE_subject_t;

/

CREATE OR REPLACE TYPE TSEs_t AS TABLE OF TSE_t;

/

CREATE OR REPLACE TYPE award_t AS OBJECT (

       sequenc_n    INT,

       ddate
    DATE,

       description  VARCHAR2(100),

MEMBER FUNCTION

get_award RETURN VARCHAR2  );

/

CREATE OR REPLACE TYPE BODY award_t AS 

MEMBER FUNCTION get_award RETURN VARCHAR2 IS


 BEGIN


 RETURN ddate ||' '||description;


 END;

END;

/

CREATE OR REPLACE TYPE awards_t AS TABLE OF award_t;

/

CREATE OR REPLACE TYPE keywords_t AS TABLE OF VARCHAR(30);

/

CREATE OR REPLACE TYPE interests_t AS TABLE OF VARCHAR(100);

/

CREATE TYPE health_benefit_t AS OBJECT (


plan
VARCHAR2(10),


cost 
INT,

MEMBER FUNCTION

get_health_benefit RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY health_benefit_t AS 

MEMBER FUNCTION get_health_benefit RETURN VARCHAR2 IS

       tmp VARCHAR2(30);


 BEGIN


 tmp :=      'Plan  :  ' || plan ||'|';


 tmp := tmp||'Cost  :  ' || cost ||'|';


 RETURN tmp;


 END;

END;

/

CREATE TYPE evaluation_t AS OBJECT (


ddate
DATE,


score 
INT,


comments
VARCHAR2(100),

MEMBER FUNCTION

get_evaluation RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY evaluation_t AS 

MEMBER FUNCTION get_evaluation RETURN VARCHAR2 IS

       tmp VARCHAR2(150);


 BEGIN


 tmp :=      'Date     :  ' || ddate ||'|';


 tmp := tmp||'Score    :  ' || score ||'|';


 tmp := tmp||'Comments :  ' || comments ||'|';


 RETURN tmp;


 END;

END;

/

CREATE OR REPLACE TYPE committee_decision_t  AS OBJECT (

       ddate

DATE,

       decision

VARCHAR2(20),

       deny_reason
VARCHAR2(20),

       provisions
VARCHAR2(20),

       assigned_advisor
REF faculty_staff_t,

       tests_waived
VARCHAR2(10),

       under_courses
VARCHAR2(30),

       is_assistant
CHAR(1),

       type

VARCHAR2(15),

       amount

INT,

       duration

VARCHAR2(10),

MEMBER FUNCTION

get_committee_decision RETURN VARCHAR2,

MEMBER FUNCTION

get_advisorREF RETURN REF faculty_staff_t,

MEMBER FUNCTION

get_decision RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY committee_decision_t AS 

MEMBER FUNCTION get_committee_decision RETURN VARCHAR2 IS


 tmp VARCHAR2(200);


 BEGIN


 tmp :=      'Date         :  ' || ddate||'|';


 tmp := tmp||'Decision     :  ' || decision||'|';


 tmp := tmp||'Deny Reason  :  ' || deny_reason || '|';


 tmp := tmp||'Provisions   :  ' || provisions || '|';


 tmp := tmp||'Waived Tests :  ' || tests_waived || '|';


 tmp := tmp||'Undergraduate Courses Required : '||under_courses||'|';


 tmp := tmp||'Assistantship : ' || is_assistant || '|';


 tmp := tmp||'Type         :  ' || type || '|';


 tmp := tmp||'Amount       :  ' || amount || '|';


 tmp := tmp||'Duration     :  ' || duration || '|';


 RETURN tmp;


 END;

MEMBER FUNCTION get_advisorREF RETURN REF faculty_staff_t IS

       BEGIN

       RETURN assigned_advisor;

       END;

MEMBER FUNCTION get_decision RETURN VARCHAR2 IS

       BEGIN

       RETURN decision;

       END;

END;

/

CREATE OR REPLACE TYPE defer_request_t AS OBJECT (

       semester

    VARCHAR2(10),

       yyear

    VARCHAR2(4),

       is_decided
    CHAR(1),

       decision_date
    DATE,

MEMBER FUNCTION

get_defer_request RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY defer_request_t AS 

MEMBER FUNCTION get_defer_request RETURN VARCHAR2 IS

       tmp VARCHAR2(100);


 BEGIN


 tmp :=      'Semester     :  ' || semester ||'|';


 tmp := tmp||'Year         :  ' || yyear||'|';


 tmp := tmp||'Decided      :  ' || is_decided || '|';


 tmp := tmp||'Decision Date:  ' || decision_date || '|';


 RETURN tmp;


 END;

END;

/

CREATE OR REPLACE TYPE application_decision_t AS OBJECT (

       ddate

DATE,

       decision

VARCHAR2(20),    

       arrival_date
DATE,

       defer_request
defer_request_t,

       notes

VARCHAR2(30),

MEMBER FUNCTION

get_application_decision RETURN VARCHAR2,

MEMBER FUNCTION

get_decision RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY application_decision_t AS 

MEMBER FUNCTION get_application_decision RETURN VARCHAR2 IS

       tmp VARCHAR2(150);


 BEGIN


 tmp :=      'Arrival Date  :  ' || arrival_date ||'|';


 tmp := tmp||'Decision      :  ' || decision || '|';


 tmp := tmp||'Decision Date :  ' || ddate || '|';


 tmp := tmp||'Defer Request :  ' || defer_request.get_defer_request()||'|';


 tmp := tmp||'Notes         :  ' || notes||'|';


 RETURN tmp;


 END;

MEMBER FUNCTION get_decision RETURN VARCHAR2 IS

       BEGIN

       RETURN decision;

       END;

END;

/

CREATE OR REPLACE TYPE committee_member_t AS OBJECT(


sequence_n
INT,


faculty

REF faculty_staff_t,


role

VARCHAR2(10),

MEMBER FUNCTION

get_committee_member RETURN VARCHAR2,

MEMBER FUNCTION

get_facultyREF RETURN  REF faculty_staff_t);

/

CREATE OR REPLACE TYPE BODY committee_member_t AS 

MEMBER FUNCTION get_committee_member RETURN VARCHAR2 IS


 BEGIN


 RETURN role;


 END;

MEMBER FUNCTION get_facultyREF RETURN  REF faculty_staff_t IS

       BEGIN

       RETURN faculty;

       END;

END;

/

CREATE OR REPLACE TYPE committee_t AS TABLE OF committee_member_t;

/

CREATE OR REPLACE TYPE comp_exam_t AS OBJECT (

       sequence_n      INT,

       subject
       VARCHAR2(30),

       ddate
       DATE,

       score
       int,

       grade
       VARCHAR2(30),

MEMBER FUNCTION

get_comp_exam RETURN VARCHAR2);

/

CREATE OR REPLACE TYPE BODY comp_exam_t AS 

MEMBER FUNCTION get_comp_exam RETURN VARCHAR2 IS

       tmp VARCHAR2(80);


 BEGIN


 tmp :=      'Subject :  ' || subject ||'|';


 tmp := tmp||'Date    :  ' || ddate ||'|';


 tmp := tmp||'Score   :  ' || score ||'|';


 tmp := tmp||'Grade   :  ' || grade ||'|';


 RETURN tmp;


 END;

END;

/

CREATE OR REPLACE TYPE comp_exams_t AS TABLE OF comp_exam_t;

/       

CREATE OR REPLACE TYPE preliminary_exam_t AS OBJECT (

       title
       VARCHAR2(50),

       abstract
       VARCHAR2(100),

       grade
       VARCHAR2(4),

       ddate
       DATE,

MEMBER FUNCTION

get_preliminary_exam RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY preliminary_exam_t AS 

MEMBER FUNCTION get_preliminary_exam RETURN VARCHAR2 IS

       tmp VARCHAR2(80);


 BEGIN


 tmp :=      'Title    :  ' || title ||'|';


 tmp := tmp||'Abstract :  ' || abstract ||'|';


 tmp := tmp||'Grade    :  ' || grade ||'|';


 tmp := tmp||'Date     :  ' || ddate ||'|';


 RETURN tmp;


 END;

END;

/

CREATE OR REPLACE TYPE defense_t AS OBJECT (

       thesis
       VARCHAR2(10),

       title
       VARCHAR2(50),

       abstract
       VARCHAR2(100),

       ddate
       DATE,

       result
       VARCHAR2(4),

MEMBER FUNCTION

get_defense RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY defense_t AS 

MEMBER FUNCTION get_defense RETURN VARCHAR2 IS

       tmp VARCHAR2(300);


 BEGIN


 tmp :=      'Thesis   :  ' || thesis ||'|';


 tmp := tmp||'Title    :  ' || title ||'|';


 tmp := tmp||'Abstract :  ' || abstract ||'|';


 tmp := tmp||'Result   :  ' || result ||'|';


 tmp := tmp||'Date     :  ' || ddate ||'|';


 RETURN tmp;


 END;

END;

/

CREATE OR REPLACE TYPE project_t AS OBJECT (

       title
       VARCHAR2(50),

       abstract
       VARCHAR2(100),

       ddate
       DATE,

MEMBER FUNCTION

get_project RETURN VARCHAR2 );

/

CREATE OR REPLACE TYPE BODY project_t AS 

MEMBER FUNCTION get_project RETURN VARCHAR2 IS


 tmp VARCHAR2(200);


 BEGIN


 tmp :=      'Title    :  ' || title ||'|';


 tmp := tmp||'Abstract :  ' || abstract ||'|';


 tmp := tmp||'Date     :  ' || ddate ||'|';


 RETURN tmp;


 END;

END;

/

CREATE OR REPLACE TYPE applicant_t AS OBJECT(

       id


   int,

       ssn

   
CHAR(9),

       name

   
name_t,

       sex

   
VARCHAR2(6),

       ethnic_heritage    VARCHAR2(20),

       country

      VARCHAR2(30),

       primary_language   VARCHAR2(20),

       birthday     
   
DATE,

       contact_info
   
contact_t,

       emerg_cont_person  
 emergence_t ,

       research_keywords   keywords_t,

       research_interests  interests_t );

/

CREATE OR REPLACE TYPE additional_info_t AS OBJECT(

       id 

       
int,

       institution
       
institutions_t,

       publication
       
publications_t,

       letter

       
recom_letters_t,

       GRE
 
      
GREs_t,

       GRE_subject


GRE_subjects_t,

       TOEFL



TOEFLs_t,

       TSE



TSEs_t,

       waived



VARCHAR2(10),

       award

       
awards_t );

/

CREATE OR REPLACE TYPE course_t AS OBJECT (

       course_name

VARCHAR2(20),

       course_number

VARCHAR2(10),

       section_number
VARCHAR2(10),

       semester

VARCHAR2(10),

       yyear


CHAR(4),

       instructor

REF faculty_staff_t,

       transfer

CHAR(1),

       trans_institution
REF institution_t,

       TA


REF assistantship_fellowship_t );

/

CREATE OR REPLACE TYPE assistantship_fellowship_t AS OBJECT (

        student_id
INT,


ttype


VARCHAR2(10),


step 


INT,


start_date 

DATE,


duration

VARCHAR2(20),


account_number
VARCHAR2(20),


tuition_credits
INT,


stipend

INT,


health_benefit
health_benefit_t,


supervisor

REF faculty_staff_t,


s_evaluation
evaluation_t,


duties

VARCHAR2(50),


office

VARCHAR2(20),


phone


VARCHAR2(15),


TA_assignment
TA_assignment_t,


TA_test_date
DATE,


TA_test_score
int,


TA_test

TA_tests_t,


dimiss_date

DATE,


dimiss_resons
VARCHAR2(30) );

/

CREATE OR REPLACE TYPE grad_applicant_t AS OBJECT (

       id

      
INT,

       received_date
    

DATE,

       update_date


DATE,

       dls_date


DATE,

       gls_date


DATE,

       lls_date


DATE,

       program

    

CHAR(2),

       degree_sought
    

VARCHAR2(10),

       semester

    
VARCHAR2(10),

       yyear

    

VARCHAR2(4),

       is_finance_requested 
CHAR(1),

       finance_source
    
VARCHAR2(20),

       notes

    

VARCHAR2(30),

       status

    

VARCHAR2(15),

       committee_decision   
committee_decision_t,

       application_decision 
application_decision_t );

/

CREATE OR REPLACE TYPE review_t AS OBJECT (

       sequence_n      
INT,

       ddate
       
DATE,

       reviewer
      REF faculty_staff_t,

       applicant_id    
REF grad_applicant_t,

       recommendation  
VARCHAR2(10),

       match_faculties 
faculties_t,

       undercourses    
courses_t,

       comments
      VARCHAR2(50) );

/

CREATE OR REPLACE TYPE sstudent_t AS OBJECT (


id

          

INT,


program


  
VARCHAR2(10),


admitted_date

  
DATE,


degree_sought

  
VARCHAR2(10),


research_advisor
  

REF faculty_staff_t,


academic_advisor
  

REF faculty_staff_t,


preliminary_committee
  
committee_t,


defense_committee
  

committee_t,


project_committee
  

committee_t,


status


  
VARCHAR2(30),


comp_exam

  

comp_exams_t,


comp_exam_result
  

VARCHAR2(30),


preliminary_exam
  

preliminary_exam_t,


project


  
project_t,


defense


  
defense_t,


PhD_candidate_date
  
DATE,


graduation_date

  
DATE,


update_date

  

DATE,


xerox_number

  
int );

/

CREATE OR REPLACE TYPE graduated_t AS OBJECT (

        student_id

INT,



ddate 

DATE,



degree

VARCHAR2(10),



first_job

VARCHAR2(30),



start_date 

DATE );

/

CREATE OR REPLACE TYPE dismissed_t AS OBJECT (

  student_id

INT,


ddate 

DATE,


reasons

VARCHAR2(30) );

/

CREATE OR REPLACE TYPE enrollment_t AS OBJECT(

       sequence_n

INT,

       course


REF course_t,

       student_id

REF sstudent_t,

       grade


VARCHAR2(2) );

/

CREATE TABLE deny_reasons_tab (


reason


VARCHAR2(20) PRIMARY KEY);

CREATE TABLE applicant_tab OF applicant_t (


id 

PRIMARY KEY,


ssn

UNIQUE,


name

NOT NULL,


birthday
NOT NULL,


sex 

NOT NULL )


NESTED TABLE research_keywords STORE AS research_keywords_tab


NESTED TABLE research_interests STORE AS research_interests_tab;

CREATE TABLE additional_info_tab OF additional_info_t (


PRIMARY KEY (id),


FOREIGN KEY (id) REFERENCES applicant_tab(id) ON DELETE CASCADE)


NESTED TABLE institution STORE AS institution_tab (



(PRIMARY KEY (NESTED_TABLE_ID,sequence_n))



ORGANIZATION INDEX COMPRESS)



RETURN AS LOCATOR


NESTED TABLE GRE STORE AS GRE_tab (



(PRIMARY KEY (NESTED_TABLE_ID,sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE GRE_subject STORE AS GRE_subject_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE TOEFL STORE AS TOEFL_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE TSE STORE AS TSE_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE LETTER STORE AS LETTER_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE PUBLICATION STORE AS PUBLICATION_tab (



(PRIMARY KEY (NESTED_TABLE_ID, sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE award STORE AS awards_tab;

CREATE TABLE faculty_staff_tab OF faculty_staff_t (


ssn

PRIMARY KEY,


name

NOT NULL,


sex

NOT NULL,


is_staff 
NOT NULL )


NESTED TABLE research_topics STORE AS research_topics_tab;

CREATE TABLE grad_applicant_tab OF grad_applicant_t (


PRIMARY KEY (id),


FOREIGN KEY (id) REFERENCES applicant_tab(id),


SCOPE FOR (committee_decision.assigned_advisor) IS faculty_staff_tab)


OBJECT ID PRIMARY KEY;

CREATE TABLE student_tab OF sstudent_t (


id

PRIMARY KEY,


program

NOT NULL,


admitted_date
NOT NULL,


degree_sought
NOT NULL,


status

NOT NULL,


update_date
NOT NULL,


FOREIGN KEY (id) REFERENCES applicant_tab(id))


NESTED TABLE preliminary_committee STORE AS preliminary_commitee_tab (


       (PRIMARY KEY (NESTED_TABLE_ID,sequence_n))


       ORGANIZATION INDEX COMPRESS)


NESTED TABLE project_committee STORE AS project_commitee_tab (


       (PRIMARY KEY (NESTED_TABLE_ID,sequence_n))


       ORGANIZATION INDEX COMPRESS)


NESTED TABLE defense_committee STORE AS defence_commitee_tab (


       (PRIMARY KEY (NESTED_TABLE_ID,sequence_n))
     


       ORGANIZATION INDEX COMPRESS)


NESTED TABLE comp_exam STORE AS
comp_exam_tab (


       (PRIMARY KEY (NESTED_TABLE_ID, sequence_n))




    ORGANIZATION INDEX COMPRESS);

CREATE TABLE assistantship_fellowship_tab OF assistantship_fellowship_t (


PRIMARY KEY (student_id, duration, ttype),


FOREIGN KEY (student_id) REFERENCES student_tab(id),


SCOPE FOR (supervisor) IS faculty_staff_tab,


step
NOT NULL )


NESTED TABLE TA_assignment STORE AS TA_assignment_tab (



(PRIMARY KEY (NESTED_TABLE_ID,sequence_n))



ORGANIZATION INDEX COMPRESS)


NESTED TABLE TA_test STORE AS TA_test_tab (



(PRIMARY KEY (NESTED_TABLE_ID,sequence_n))



ORGANIZATION INDEX COMPRESS);

CREATE TABLE course_tab OF course_t (


PRIMARY KEY (course_number, section_number,semester, yyear),


SCOPE FOR (instructor) IS faculty_staff_tab,


SCOPE FOR (TA) IS assistantship_fellowship_tab);

CREATE TABLE dismissed_student_tab OF dismissed_t (


PRIMARY KEY (student_id),


FOREIGN KEY (student_id) REFERENCES student_tab(id),


ddate NOT NULL,


reasons NOT NULL);

CREATE TABLE graduated_student_tab OF graduated_t (


PRIMARY KEY (student_id),


FOREIGN KEY (student_id) REFERENCES student_tab(id),


ddate NOT NULL,


degree NOT NULL );

CREATE TABLE enrollment_tab OF enrollment_t (

       
PRIMARY KEY (sequence_n),



Student_id course UNIQUE,

       
SCOPE FOR(course) IS course_tab,

       
SCOPE FOR(student_id) IS student_tab );

CREATE TABLE review_tab OF review_t (


PRIMARY KEY (sequence_n),


Appliant_id reviewer UNIQUE,


SCOPE FOR (reviewer) IS faculty_staff_tab,


SCOPE FOR (applicant_id) IS grad_applicant_tab );

CREATE SEQUENCE student_id_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE letter_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE review_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE GRE_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE GRE_subject_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE TSE_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE TOEFL_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE institution_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE TA_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE TA_test_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE committee_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE comp_exam_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE enrollment_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE publication_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE SEQUENCE awards_seq


INCREMENT BY 1


START WITH 1


NOMAXVALUE


NOCYCLE


CACHE 10;

CREATE INDEX applicant_ind applicant_tab(id);

CREATE INDEX grad_applicant_ind grad_applicant_tab(id);

CREATE INDEX student_ind student_tab(id);

CREATE INDEX faculty_ind faculty_staff_tab(ssn);

CREATE UNIQUE INDEX course_ind ourse_tab(course_number);















































Faculty



 Class



Department



Review

















































� EMBED Word.Picture.8  ���



Dismissed





StudentClass





Classes





Assistantship



Applic_Status





Completed



Enrolled



Applicant





Assistantship





Comp Exam





Defense



Committee





Take Class





Status



 Advisoror



Enroll



Decision



Review



Update



New



Query



Enrolled



Application



� EMBED Word.Picture.8  ���



Other update







Student status











Faculty









Dismissed Student









Graduate







1
47

_1006544283.doc
[image: image1.png]


_1006543804.doc
[image: image1.png]


