Exam 1 Review (Chapters 1 – 4, 6 – 9)

Types of questions
- Definitions
- Short questions
- Comparisons
- Problem solving (simple problems)
- Proofs

- State Space
 - States, state transition rules/operators/actions, and costs associate with operations
 - State space, node generation and node expansion, open/closed nodes, open/closed lists.
 - Solution, solution path and its cost.
 - Be able to represent simple problem-solving as state space search

- Uninformed (blind) Search Methods
 - Search methods (BF, DF, IDDF, Uniform-cost), their algorithms, time and space complexities, optimality and completeness, their advantages and limitations.

- Informed Search methods
 - Evaluation function f(n),
 - Heuristic estimate function h(n)
 - what does h(n) estimate
 - admissible h(n), null h(n), perfect h*(n), more informed h(n)
 - Best first search:
 - node selection from open list according to f(n)
 - delayed goal testing
 - Algorithm A and A*
 - f(n) = g(n) + h(n): what does each of the terms stand for?
 - algorithm (maintaining open/closed lists, delayed goal test; node expansion, handling duplicate nodes, back pointers);
 - difference between algorithms A and A*
 - time and space complexity, completeness and optimality of A*
 - be able to apply A* to simple problems.
 - Be able to prove simple properties related to A* search
 - Ways to improve A* search
 - IDA* (basic idea; how to set f_limit at each iteration; advantages over A*)
 - Pruning open list by f+, where f+ is an upper bound of the cost for the optimal solution (e.g., the cost of any known solution)
 - Greedy search and hill-climbing (algorithms, time and space complexity, completeness and optimality)
 - Basic ideas of simulated annealing for seeking optimal solutions

- Game-Tree Search
 - Game tree (Max and Min nodes; look ahead, terminal and leave nodes)
- What to search for (one move for Max with maximum guaranteed payoff)
- Heuristic evaluation function f(n) (merit of a board configuration)
- Minimax rule for game tree search
- Alpha-beta pruning, its time and space complexities.
- Difference between general state space search and game tree search
- Be able to apply Minimax rule and alpha-beta pruning to simple problems.

- **Propositional Logic (PL)**
 - Syntax
 - Semantics
 - Interpretation (an assignment of truth values to all propositional symbols); models
 - Truth tables for logical connectives
 - Valid (tautology), satisfiable and inconsistent (contradiction) sentences
 - Logical consequence or entailment (S |= X)
 - Equivalence laws
 - P ⇔ Q iff they have the same truth tables
 - P ⇒ Q ⇔ ¬P ∨ Q; distribution /associative/communicative laws, De Morgan's laws
 - Deductive inference
 - Using truth table (S |= X iff S ⇒ X is valid)
 - Using deductive rules
 - Modus Ponens, Modus Tollens, Chaining, And Introduction, And Elimination, etc.
 - Soundness of deductive rules
 - **Resolution rule** (and CNF)
 - Proof procedure, Soundness and completeness of proof procedures

- **First Order Logic (FOL)**
 - Syntax
 - Terms, predicates, atoms, literals, quantifiers, wff
 - Semantics
 - Interpretations and models, valid, satisfiable, and inconsistent sentence(s), Logical consequences
 - Be able to translate between English sentences and FOL sentences
 - Soundness and completeness of proof theory in FOL

- **Deductive Inference in FOL**
 - Convert first order sentences to clause form
 - Definition of clauses, converting FOL sentences to clause form (**Skolemization**)
 - Unification (obtain mgu θ)
 - Resolution
 - Resolution Refutation
 - Write the axioms as FOL sentences and convert them into clause form
 - Write the goal (theorem) as a FOL sentence
 - Negate the goal and convert it to clause form
 - Select a pair of clauses for resolution which are i) resolvable, and ii) promising toward deriving a null clause,
- Inference stops when a null clause is derived
 - Be able to do resolution refutation on simple problems.
- Other issues
 - Semi-decidability
 - Forward and backward chaining