• **State Space**
 - States: initial, goal, state description
 - State transition rules/operators/actions, and costs associate with operations
 - State space as directed graph (nodes, arcs, parents/children)
 - Node generation and node expansion: open/closed nodes, open/closed lists.
 - **Solution, solution path and its cost.**
 - Be able to represent simple problem-solving as state space search

• **Uninformed (blind) Search Methods**
 - Breadth-first.
 - Depth-first, Depth-limited (plus back-tracking).
 - **IDDF**: Iterative-deepening depth-first. (motivation, advantage over BF and DF methods.)
 - Uniform-cost search.
 - Bi-directional search (advantage and applicability)
 - **Algorithm, time and space complexities, optimality and completeness** of each of these search methods

• **Informed Search methods**
 - Evaluation function f(n),
 - **Heuristic estimate function** h(n)
 - what does h(n) estimate
 - admissible h(n), null h(n), perfect h*(n), more informed h(n)
 - idea of automatic generation of h functions
 - Best first search: open list is organized according to f(n)
 - Algorithm A and A*
 - f(n) = g(n) + h(n): what does each of the terms stand?
 - algorithm (maintaining open/closed lists, delayed termination test; node expansion and generation, handling duplicate nodes, back pointers);
 - difference between algorithms A and A*
 - time and space complexity, completeness and optimality of A*
 - **be able to apply A* to simple problems**.
 - Greedy search and hill-climbing (algorithms; time and space complexity, completeness and optimality)

• **Game -Tree Search**
 - Perfect 2-player games
 - Game tree (Max and Min nodes; terminal and leave nodes)
 - **What to search for** (one move for Max)
 - Heuristic evaluation function f(n) (merit of a board configuration)
 - **Minimax rule for game tree search**
 - **Alpha-beta pruning**, its time and space complexities.
 - Difference between general state space search and game tree search
- Be able to apply Minimax rule and alpha-beta pruning to simple problems.

- **Propositional Logic (PL)**
 - Syntax
 o Propositions
 o Symbols (T, F, proposition symbols)
 o Connectives
 o Definition of PL sentences
 - Semantics
 o **Interpretation** (an assignment of truth values to all prepositional symbols); models
 o Truth tables for logical connectives
 o Valid (tautology), satisfiable, and inconsistent (contradiction) sentences
 o **Logical consequence or theorem** \((S \models X) \)
 - Equivalence laws
 o \(P \equiv Q \) iff they have the same truth tables
 o \(P \Rightarrow Q \equiv \neg P \lor Q \); distribution /associative/communicative laws, De Morgan's laws
 - Deductive rules
 o Derivation using inference rules: \(S \vdash X \)
 o Modus Ponens, Modus Tollens, Chaining, And Introduction, And Elimination, etc.
 o **Resolution rule (and CNF)**
 - Deductive inference
 o Using truth table \((S \models X \text{ if } S \vdash X \text{ is valid}) \)
 o Proof procedure (using inference rules)
 o **Sound** inference rules and proof procedures (if \(S \models X \text{ then } S \vdash X \))
 o **Complete** proof procedures (if \(S \models X \text{ then } S \vdash X \)). (exponential time complexity)

- **First Order Logic (FOL)**
 - Syntax
 o Terms (constants, variables, **functions of terms**)
 o Predicates (special functions, ground predicates), atoms and literals
 o Logical connectives
 o **Quantifiers** (universal and existential), their scopes, De Morgan's law with quantifiers
 o Definitions of FOL sentences and well-formed formulas (wffs)
 - Semantics
 o Interpretation (constants, functions, and predicates) and models
 o Semantics of logical connectives and quantifiers
 o Valid, satisfiable, and inconsistent sentence(s)
 o Logical consequences
 o **Be able to translate between English sentences and FOL sentences**
 o Soundness and completeness of proof theory in FOL