
Fault tolerant scheduling on a
hard real time multiprocessor
system

S. Ghosh, Rami Melhem, Daniel Mosse

Introduction

Fault tolerance is important issue in hard real time system
One way to provide fault tolerance is to schedule multiple copies of
task on different processor
Primary/backup approach algorithm proposed to handle transient
faults.
Tasks are assumed to be periodic and period of any task should be
multiple of period of its preceding task.
Algorithm also assumes that execution time of backup is shorter
than primary.

Objective

Study fault tolerant scheduling primary/backup (PB algorithm) ,
allows processor transient/permanent faults
Idea of backup overloading which demands less processor time to
provide fault tolerance
Backup de-allocation idea

Fault tolerant scheduling problem

System consist of n interconnected identical processor and there is task scheduling
central processor
Assume task are independent ,no precedence constraints
Both permanent faults and transient fault handled by the proposed approach. It does
not consider software faults or correlated component faults

Task Ti modeled as Ti =
(arrival time, ready time, deadline, max computation time/WCET)

Window of task = at least twice large as computation time

Task schedules are guaranteed to execute if processor fails any instant of time and
second processor does not fail before system recovery from first failure
If completion guarantee of task not assured ,then task is rejected

Primary/Backup scheduling approach

Two major techniques used while scheduling
Backup overloading

Scheduling backups for multiple primary task at same time period for
efficient processor time utilization
De-allocation of backup after successful completion of primary

Primary/backup time slots: time slots when primary and backup copy of
task scheduled

Overloaded time slot: if backup copies of more than one tasks
scheduled to run in same time slot

Forward slack: max amount of time a slot can be postponed without
violating timing constraints

Scheduling Restrictions

Let Primary copy and Secondary copy of task

Primary task and secondary can’t be scheduled on same processor
Begin time of secondary task has to be greater then primary
So that backup can be executed after fault detection
Both primary and backup to be scheduled between ri and di (ready
time and deadline)
If two primary scheduled on same processor then their backup must
not overlap

iPr
iBk

Algorithm for fault tolerant scheduling of task Ti

Schedule Pri as early as possible
Try to overload Bki on existing backup slot .If not possible schedule
backup as late as possible on free slot.
If schedule has been found for both Pri and Bki, then commit the
task otherwise reject it.

Algorithm principle

When new task arrives its primary and backup needs to be
scheduled
While scheduling Primary and backup, list of existing slots is
maintained
Schedule primary as early as possible and backup as late as
possible
After successful completion of primary ,its backup is de-allocated
After de-allocation the free slot is reutilized for scheduling any task
that arrives after de-allocation.

Thus utilization is increased and overhead is reduced

Scheduling 4 task on 3 processors

Primary scheduled as early as possible and backup scheduled as late as
possible

Assumption , release time = ready time i.e.

And Bk1 and Bk3 overloaded on same time slot

primary1

De-allocation

Completion of task 2 and 1 cause de-allocation of respective backup

New schedule after arrival of 2 more tasks

Bk3 overloaded with Bk5 and due to de-allocation of Bk1 , Pr6 can be scheduled
on processor2.

Primary Task scheduling steps

Check each processor to see if Pri can be scheduled between ri
and di

If there is free slot larger than Ci then schedule Pri on that
Processor
If Pri can’t be scheduled w/o overlapping other time slot slot_j
then check if slot_j can be rescheduled
To check slot_j
-check slack of slot_j
-if (slack of slot_j + preceding free slot) > ci then Pri can be
scheduled after shifting slot_j

Backup of task scheduling

If primary task is scheduled on processor Pj then to schedule
backup other than Pj

1. First choice to overload existing backup slot
2. If no backup slot can be overloaded then schedule backup on

existing free slot
For primary forward slack is maintained and allowed forward
move but backup slot movement not allowed
-As backup slot may support more than one primary and if its moved
primary slack changes

Reasons for scheduling primary before backup

1. Scheduling primary is more difficult than backup
2. To minimize constraints

Scheduling backup is easy because
1] It can be overloaded on existing backup
Preferred as it minimizes utilization of available processor time
2] Can be scheduled in any free slot

Simulation parameter

Lead time parameter= difference between ready time and arrival time

If then avg. inter-arrival time is 1, this means one task will
arrive in system every unit of time and thus load on each processor is 1

Load ranges from 0 to 1

Simulation results

Rejection rate as function of load ,for different window sizes for 5 processors

rejection rate increases as increase in load
larger the window size smaller the rejection rate

Comparison of 3 schemes : spare scheme, primary/backup, no FT

schemes simulation task set consist of 1000 tasks,
assumption lead time=0 arrival time=ready time

Rejection rate of overloading schemes as function of number of
processors

Rejection rate by window size

Runtime behavior

If there is permanent fault in processor backup of all primary running
on that processor executed on respective backups
Task arriving after fault, both primary and secondary copies
scheduled on fault free processors
Second fault can be tolerated after last primary scheduled on faulty
processor has been run its backup schedule and
last task which has backup on faulty processor is executed
Transient fault case, copy of currently executing primary is activated
and remaining schedule remains same

Conclusion

Algorithm tolerate more than one fault if separated by sufficient
amount of time
To tolerate 2 simultaneous faults more backup copy need to be
scheduled

	Fault tolerant scheduling on a hard real time multiprocessor system
	Introduction
	Objective
	Fault tolerant scheduling problem
	Primary/Backup scheduling approach
	Scheduling Restrictions
	Algorithm for fault tolerant scheduling of task Ti
	Algorithm principle
	Scheduling 4 task on 3 processors
	De-allocation
	New schedule after arrival of 2 more tasks
	Primary Task scheduling steps
	Backup of task scheduling
	Reasons for scheduling primary before backup
	Simulation parameter
	Simulation results Rejection rate as function of load ,for different window sizes for 5 processorsrejection rate increase
	Comparison of 3 schemes : spare scheme, primary/backup, no FT schemes simulation task set consist of 1000 tasks, assumption
	Rejection rate of overloading schemes as function of number of processors
	Rejection rate by window size
	Runtime behavior
	Conclusion

