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Introduction

Paper examines the problem of determining  the bound on the worst case 
execution time (WCET) of a given program on a given processor.

Two important issues in solving this problem:
Program path analysis
Microarchitecture modelling

Method which address both issues is proposed
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Two issues involved in solving this problem.

Program path analysis.

This determines what sequence 
of instructions will be executed in 
the worst case scenario.
Infeasible program paths removed 
from the solution search space
done by a data flow analysis of the 
program
analysis should provide a 
mechanism for program path 
annotations.

Microarchitecture modeling

Models the hardware system and 
computes the WCET of a given 
sequence of instructions
becoming difficult to model
most modern processors have 
pipelined instruction execution 
units and cached memory 
systems.
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Proposed Solution
Address both issues

determine a tight bound on a program’s worst case execution time.

Explicit path enumeration not necessity to obtain tight estimated WCET

Method determine worst case execution count of instruction and from these 
counts computes the estimated WCET

includes a direct-mapped instruction cache analysis 

uses an integer linear programming formulation to solve the problem.

allows the user to provide program path annotations so that a tighter bound 
may be obtained.
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Program path analysis problem handling 

Pessimistic approach:
Used simple microarchitecture model that assumes the execution time of an 
instruction to be a constant, i.e., every instruction fetch is assumed to result 
in a cache miss.

method uses the counting approach to compute the estimated WCET.

method converts the problem of solving the estimated WCET
into a set of integer linear programming (ILP) problems
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ILP Formulation
Assumption:  Each instruction takes a constant time to execute

Instructions within a basic block are always executed together,
their execution counts are always the same.

let xi be the execution count of a basic block Bi, and Ci be the execution 
time of the basic block, 
given that there are N basic blocks in the program,

possible values of xi  are constrained by the program structure and the 
possible values of the program variables.

If  these constraints represented as linear inequalities, the problem of 
finding the estimated WCET of a program is reduced to an integer linear 
programming (ILP) problem
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Linear Constraints

Divided into two parts:
Program structural constraints,

Derived automatically from the program’s control flow graph (CFG)
program functionality constraints, 
-provided by the user to specify loop bounds and other path information
-or extracted from the program semantics.

total time required to solve the estimated WCET depends on the number of 
functionality constraint sets and the time to solve each constraint set.

the complexity of solving each ILP problem, an NP-hard problem.
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Example of Construction of these constraints
A conditional statement is nested inside a while loop

di = a count of the the 
number of times that the 
program control passes 
through that edge.

/*  k>=0 */
S=k;

While (k < 10) {if (ok)
J++;

Else {
J =0; ok=true;}

K++;
} r=j;

Each node in the CFG represents a basic block Bi.
basic block execution count, xi, is associated with each node.
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Structural constraints
Structural constraints can be derived from the CFG
Fact: for each node Bi, its execution count is equal to the number of times 
that the control enters the node (inflow), and is also equal to the number of 
times that the control exits the node (outflow).
structural constraints of this example

Code fragment executed once, so  d1=1

structural constraints do not provide any loop bound information
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Functional constraints
Loop bound information can be provided by the user as a functionality 
constraint.

Example: since k is positive before it enters the loop, the loop body will be 
executed between 0 and 10 times each time the loop is entered.
The constraints to specify this information are:

The functionality constraints can also be used to specify other path information. 
Example: the else statement (B5) can be executed at most once inside the loop.
This information can be specified as: 
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To solve the estimated WCET, each set of the functionality constraint sets is 
combined (the conjunction taken) with the set of structural constraints.

The combined set is passed to the ILP solver with cost function to be 
maximized. 
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Microarchitecture Modeling

Previously, the modeling was simple because the execution time of an 
instruction was largely independent of others

goal is to model the CPU pipeline and the cache memory
systems and find out the execution times (Ci) of the basic
Blocks

Method limited  to model a direct-mapped instruction cache.

can be extended to handle set associative instruction cache memory.
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Direct-mapped Instruction Cache Analysis

To incorporate cache memory analysis in ILP model 
need to modify the cost function
add a list of linear constraints, denoted as cache constraints, 
representing the cache memory behavior

Modified Cost Function
With cache memory execution time of an instruction will be different 
depending on whether it results in a cache hit or cache miss.
need to subdivide the original instruction counts into counts of cache 
hits and misses.

If  cache hit and miss count  and hit and miss execution time of instruction 
determined then tighter bound on execution time of program is established
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New type of atomic structure line-block ( l-block)
for analysis

Adjacent instructions can be grouped together
l-block is defined as a contiguous sequence of instructions within the same 
basic block that are mapped to the same line in the instruction cache.
a basic block Bi is partitioned into ni l-blocks. We denote these l-blocks as 
Bi.1, Bi.2, . . . , Bi.ni .
All instructions within an l-block will always have the same cache hit/miss 
counts, and the same total execution counts
The cache hit and the cache miss counts of l-block Bi. j are denoted as 
Xhit i. j and xmiss i.j

the cache behavior can now be specified in terms of the new variables
xhit i. j  and xmiss i. j 

New total execution time (Cost Function)
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Example showing how the l-blocks are constructed.
Each rectangle in the cache table represents a l-block.
CFG with 3 basic blocks and instruction has 4 cache line

B1.1

B1.2

B1.3

B2.1

B2.2

B3.1

B3.2

•any two l-blocks that map to the same cache line, they conflict with each 
other if the execution of one l-block will displace the cache content of the 
other.
• Otherwise, they are called non-conflicting l-blocks e.g. B1.3 and B2.1
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Cache Constraints

used to constrain the hit/miss counts of the l-blocks.
simple case  : For each line only one l-block               mapping.
First execution of this l-block may cause a cache miss and all subsequent 
executions will result in cache hits.

case : Two or more non-conflicting l-blocks map to the same cache line(
and

The execution of any of them will load all the l-blocks into the cache line. sum of 
their cache miss counts is at most one.

Case: a cache line contains two or more conflicting l-blocks, the hit/miss 
counts of all the l-blocks mapped to this line will be affected by the sequence in 
which these l-blocks are executed.

lkB .

3.1B 1.2B
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Cache Conflict Graph (Network flow graph)
cache conflict graph (CCG) is constructed for every cache line containing two or 
more conflicting l-blocks. Example :Cache line contains 2 conflicting graph
start node ‘s’, an end node ‘e’, and a node Bk.l for every l-block Bk.l mapped to the 
same cache line.
if there exists a path in the CFG from basic block Bk to basic block Bm without
passing through the basic blocks of any other l-blocks of the same cache line

p(i. j,u.v) to count the number of times that the control passes through that 
edge

Program begins at S node. i)After
executing other L-block from other 
cache line eventually reaches to 
one of conflicting graph

ii) After executing Bk.l  may pass 
other l-block and reaches to Bm.n 
or directly passes to Bm.n
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continued

At each node Bi. j , the sum of control flow going into the node must be 
equal to the sum of control flow leaving the node, and it must also be equal 
to the execution count of l-block Bi. j .
two constraints are constructed at each node Bi. j:

This set of constraints is linked to structural and functionality constraints via 
the x-variables.
•Program executed once at start node 

variable p(i. j,i. j) represents the number of times that the control flows into l-
block Bi. j after executing l-block Bi. j
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If both edges (Bi.j, e) and (s, Bi.j) exists then
the program variable p (s,i. j) may also be counted as a cache hit.

if any of edges (s,Bi. j) and (Bi. j ,e) does not exist, then
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Bounds on p-variables

some path sequencing information can be expressed in terms of p-variables 
as extra functionality constraints
Without the correct bounds, the solver may return an infeasible 

l-block count and an overly pessimistic estimated WCET.

example showing two conflicting l-blocks (B4.1 and B7.1) from two different 
loops.
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The italicized numbers shown on the left of the variables are the pessimistic 
worst case solution returned from ILP solver.

For any variable p(i. j,u.v), its bounds are:

A loop preheader is the basic block just before entering the loop. For instance, in 
the example shown in Fig. 4, basic block B1 is the loop preheader of the outer 
loop and basic block B5 is the loop preheader of the inner loop.

a constraint at loop preheader B5 is needed
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Interprocedural call

function may be called many times from different locations of the program.

Every function call is treated as if it is inlined.

a function call is represented by an f - edge pointing to an instance of the 
callee function’s CFG.

edge has a variable ‘fk ‘ which represents the number of times that the 
particular instance of the callee function is called
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Function inc is called twice in the main function

last equation above links the total 
execution counts of basic block B3 with its 
counts from two instances of the function
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CCG
CCG is constructed as before by treating each instance of l-block Bi. j . fk as 
different from other instances of the same l-block.
In the example, if l-block B1.1 conflicts with l-block B3.1, then since l-block 
B3.1 has two instances (                 and             ), there will be 5 nodes in the 
CCG

.11.3 . fB .21.3 . fB
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Cache constraints
cache constraints and the bounds on p variables are constructed as before,
the hit constraints are modified slightly. Edge going from      to

counted as cache hit of block Bi.j 
The complete cache constraints derived from the example’s CCG are

.. . kji fB .1. . fB ji
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CPU Pipeline
The CPU pipeline is considered to be relatively easy to model because it is only 
effected by adjacent instructions.
As                 and                    must be constants

Assumption:  the time required to execute a sequence of instructions in the CPU 
pipeline is always a constant throughout the execution of the program.

hit cost                  of a l-block Bi. j is determined by adding up the effective 
execution times of the instructions in the l-block
the effective execution times of some instructions, especially the the floating 
point instructions, are data dependent, a conservative approach is taken by 
assuming the worst case effective execution time
Additional time is also added to the last l-block of each basic block so as to 
ensure that all the buffered load/store instructions are completed when the 
control reaches the end of the basic block.

miss cost              of the l-block is equal to the time needed to load the 
instructions of the l-block into the cache memory and to execute them in the 
CPU.

hit
jic .

miss
jic .

hit
jic .

miss
jic .
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Implementation

cache analysis method has been implemented in a tool called cinderella4, 
which estimates the WCET of programs running
The tool reads the subject program’s executable code and constructs the 
CFGs and the CCG
outputs the annotation files in which the ‘x ‘and ‘f ‘ are labeled along with

the program’s source code
user is then asked to provide loop bounds
estimated WCET can thus be computed
user can provide additional path information, if available, to tighten this 
bound.
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Experiment
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Conclusion

tight bound on a program’s WCET is estimated.
small amount of pessimism due to 

(i) insufficient path information from the user 
so that some infeasible program paths are considered,=>can be
reduced by providing more path information
(i) inaccuracy in microarchitecture modeling
affects the accuracy of the values of Chiti. j  and Cmissi. j =>reduced
by a more sophisticated hardware model
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