
4/28/2005 CMSC 691S Real-Time Systems 1

EMERALDS: a small-memory
real-time microkernel

By Khawar M. Zuberi, Padmanabhan
Pillai, and Kang G. Shin

4/28/2005 CMSC 691S Real-Time Systems 2

Outline

Introduction
Requirements
EMERALDS Overview
CSD Scheduler
Semaphore implementation
Inter-task communication
Conclusion

4/28/2005 CMSC 691S Real-Time Systems 3

Introduction

EMERALDS = Extensible Microkernel for
Embedded, ReAL-time Distributed Systems
Most RTOS were designed for powerful systems
Real-time embedded controllers are getting popular,
running on top of minimal hardware

Implement core OS services using optimized, carefully
crafted code

EMERALDS’s approach: new OS schemes and
algorithms

Small kernel and application code size
Priori knowledge of task communication and execution
pattern to reduce overhead

4/28/2005 CMSC 691S Real-Time Systems 4

Requirements

Slow processing speed (15-25 MHz) for single chip
micro-controllers
Limited ROM/RAM size (32-128 kbyte)

20 kbytes RTOS kernel code size
Uniprocessor or distributed nodes

Low speed field bus network (1-2 Mbps)
Design goal

10-20 concurrent, periodic real-time tasks
Interrupt and I/O services
No disk or file system support
Task synchronization, communication and clock service

4/28/2005 CMSC 691S Real-Time Systems 5

EMERALDS Overview

A micro-kernel RTOS written in C++
Features supported

Multi-threaded processes
IPC (message passing, mailboxes and shared
memory)
Semaphores and condition variables
Communication protocol stacks
Optimized context switching and interrupt
handling
User level device drivers

4/28/2005 CMSC 691S Real-Time Systems 6

Scheduling in embedded applications

1st try: cyclic time-slice scheduling
Calculate entire schedule offline
Modification of schedule due to task characteristic
change is difficult and costly
High-priority aperiodic task has poor response
time
Result in large time-slice schedules if work load
contains short and long period tasks

4/28/2005 CMSC 691S Real-Time Systems 7

CSD Scheduler

Priority driven scheduler: a combination of
EDF and RM

2 components of task scheduler overhead
Run-time overhead
Schedulability overhead

4/28/2005 CMSC 691S Real-Time Systems 8

Run-time overhead

Time consumed by executing scheduler code
Parsing queue tasks, add/delete tasks from queue
Blocking overhead (∆tb)
Unblocking overhead (∆tu)
Selection overhead (∆ts)

Total overhead in each period when blocking system
calls are used

∆t = 1.5(∆tb + ∆tu + 2∆ts)
Total workload utilization

U = ∑ (Ci + ∆t)/Pi, i = 1 ~ n

4/28/2005 CMSC 691S Real-Time Systems 9

Overhead comparison between EDF and
RM

EDF overhead (single, unsorted queue)
∆tb, ∆tu: O(1)
∆ts: O(n)

RM overhead (single, sorted queue)
∆tb: O(n) (set pointer point to next ready task)
∆tu: O(1)
∆ts: O(1)

RM has significant less run-time overhead than EDF
since

∆t = 1.5(∆tb + ∆tu + 2∆ts)

4/28/2005 CMSC 691S Real-Time Systems 10

Schedulability overhead

Defined as 1 – U*, where U* is the idea
schedulable utilization
Utilization U = ∑ ci/Pi, i = 1 ~ n
U* = 1 for EDF → no schdulability overhead
U* = 0.88 (0.69!?) for RM

4/28/2005 CMSC 691S Real-Time Systems 11

CSD: a mixed approach

CSD = Combined Static/Dynamic
Given a workload, it may be feasible under
EDF but not RM
Identify the “trouble maker”: the task that is
schedulable in EDF but infeasible in RM

Use EDF for tasks that has higher rate up to the
troublesome task
Use RM for the remaining tasks

4/28/2005 CMSC 691S Real-Time Systems 12

Example workload

i 1 2 3 4 5 6 7 8 9 10

Pi

(ms) 4 5 6 7 8 20 30 50 100 130

ci

(ms) 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5

4/28/2005 CMSC 691S Real-Time Systems 13

CSD (con’t)

Maintain 2 queues of tasks
Dynamic priority (DP) queue for EDF
Fixed priority (FP) queue for RM

DP queue is given higher priority
Execute tasks in DP queue if at least one task is
ready
Otherwise pick one from FP queue with highest
priority ready task

4/28/2005 CMSC 691S Real-Time Systems 14

Run-time overhead of CSD

4 possible cases
DP task blocks: ∆tb = O(1), ∆ts = O(r)
DP task unblocks: ∆tu = O(1), ∆ts = O(r)
FP task blocks: ∆tb = O(n-r), ∆ts = O(1)
FP task unblocks: ∆tu = O(1), ∆ts = O(r)

Total CSD overhead
∆tb + ∆ts_block + ∆tu + ∆ts_unblock

DP: O(1) + O(r) + O(1) + O(r) = 2O(r)
FP: O(n-r) + O(1) + O(1) + O(r) = O(n)

4/28/2005 CMSC 691S Real-Time Systems 15

Reducing CSD run-time overhead

CSD reduces runtime overhead by keeping
DP queue length short
As number of tasks increases, performance
degrades rapidly
Solution: split DP queue into sub-queues
CSD-3: 2 DP queues (DP1 & DP2) + 1 FP
queue

DP1 contains tasks having the shortest periods,
reduction in overhead greatly improves
performance

4/28/2005 CMSC 691S Real-Time Systems 16

Task allocating into sub queues

When tasks have different periods
Keep only few tasks in DP1 to keep ∆t(DP1) small
Multiple DP queues will result in non-zero
schedulability overhead

Beyond CSD-3
Increase in schedulability overhead will exceed
reduction in runtime overhead as number of
queues gets larger
2 extreme cases: 1 queue and n queues are
equivalent to RM

4/28/2005 CMSC 691S Real-Time Systems 17

CSD Performance

4/28/2005 CMSC 691S Real-Time Systems 18

CSD Performance (period scale down by 2)

4/28/2005 CMSC 691S Real-Time Systems 19

CSD Performance (period scale down by 3)

4/28/2005 CMSC 691S Real-Time Systems 20

Semaphore Implementation

Standard semaphore implementation

If (sem locked)

{

do priority inheritance;

add caller thread to wait queue;

block; //and wait for sem to be released
}

Lock sem

4/28/2005 CMSC 691S Real-Time Systems 21

Semaphore Implementation (Con’t)

Need Priority inheritance to avoid unbounded
priority inversion

4/28/2005 CMSC 691S Real-Time Systems 22

Reduce context switches

4/28/2005 CMSC 691S Real-Time Systems 23

Reduce context switches (Con’t)

Rethink priority inheritance for both DP and
FP tasks
Letting lower priority task who holds
semaphore continue to execute
Passing extra parameter to indicate which
semaphore to lock when calling
acquire_sem()

4/28/2005 CMSC 691S Real-Time Systems 24

Reducing Context switches for FP tasks

O(n-r) complexity for normal queue operation
Optimizing priority inheritance to O(1)

Insert T1 directly ahead of T2 (T1 inherits T2’s priority)
Swap position in queue between T1 and T2 (return T1 to its
original priority)

If thread T3 came in while T1 inherits T2’s priority
Swap between T1 and T3, and put T2 back

Require FP to keep ready and blocked tasks in the
same queue

4/28/2005 CMSC 691S Real-Time Systems 25

Analysis of new scheme

What if thread T2 does not block on
acquire_sem?
Is it save to delay T2?

4/28/2005 CMSC 691S Real-Time Systems 26

What if T1 has higher priority?

T2 incurs full overhead of acquire_sem()
Sol: block T2 when higher priority thread locks
S, and unblock T2 when S is released

4/28/2005 CMSC 691S Real-Time Systems 27

Semaphore scheme performance (DP)

4/28/2005 CMSC 691S Real-Time Systems 28

Semaphore scheme performance (FP)

4/28/2005 CMSC 691S Real-Time Systems 29

Inter-task communication

Traditional Mechanism: mailbox
Invoke system call to send message
High overhead
Need to send same message multiple times to
multiple tasks

Solutions
Global variables
State message passing

4/28/2005 CMSC 691S Real-Time Systems 30

State message semantics

Solve single writer, multiple reader problem
A mailbox is associated with a writer

One writer sends message to SMmailbox
Multiple readers can receive message
New message overwrites old one
Reads do not consume message
Both reads and writes are non-blocking

4/28/2005 CMSC 691S Real-Time Systems 31

State message implementation

B: max number of bytes CPU can read/write
L: message length
Simple case: L ≤ B
If L > B

assign N-deep circular buffer to each state
message
Each message has a 1-byte index

4/28/2005 CMSC 691S Real-Time Systems 32

Calculate buffer depth N

x: number of write operations can occur while
reader is blocked

N = max(2, xmax + 1)
maxReadTime = d – (c - cr) = (d – c) + cr

d: deadline
c: execution time
cr: read execution time

4/28/2005 CMSC 691S Real-Time Systems 33

Calculate max write times

xmax -1 = floor[(maxReadTime – (Pw - dw))/Pw]
pw: writer’s period
dw: writer’s deadline

4/28/2005 CMSC 691S Real-Time Systems 34

Conclusions

EMERALDS provides key OS services with
significantly lower overhead

CSD scheduler creates balance between static
and dynamic scheduling
New semaphore reduces context switch and
priority inheritance overhead by 20~30%
State-message paradigm incurs ¼~1/5 overhead

Future work
Networking issues

	EMERALDS: a small-memory real-time microkernel
	Outline
	Introduction
	Requirements
	EMERALDS Overview
	Scheduling in embedded applications
	CSD Scheduler
	Run-time overhead
	Overhead comparison between EDF and RM
	Schedulability overhead
	CSD: a mixed approach
	Example workload
	CSD (con’t)
	Run-time overhead of CSD
	Reducing CSD run-time overhead
	Task allocating into sub queues
	CSD Performance
	CSD Performance (period scale down by 2)
	CSD Performance (period scale down by 3)
	Semaphore Implementation
	Semaphore Implementation (Con’t)
	Reduce context switches
	Reduce context switches (Con’t)
	Reducing Context switches for FP tasks
	Analysis of new scheme
	What if T1 has higher priority?
	Semaphore scheme performance (DP)
	Semaphore scheme performance (FP)
	Inter-task communication
	State message semantics
	State message implementation
	Calculate buffer depth N
	Calculate max write times
	Conclusions

