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Introduction

EMERALDS = Extensible Microkernel for 
Embedded, ReAL-time Distributed Systems
Most RTOS were designed for powerful systems
Real-time embedded controllers are getting popular, 
running on top of minimal hardware

Implement core OS services using optimized, carefully 
crafted code

EMERALDS’s approach: new OS schemes and 
algorithms

Small kernel and application code size
Priori knowledge of task communication and execution 
pattern to reduce overhead
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Requirements

Slow processing speed (15-25 MHz) for single chip 
micro-controllers
Limited ROM/RAM size (32-128 kbyte)

20 kbytes RTOS kernel code size
Uniprocessor or distributed nodes

Low speed field bus network (1-2 Mbps)
Design goal

10-20 concurrent, periodic real-time tasks
Interrupt and I/O services
No disk or file system support
Task synchronization, communication and clock service
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EMERALDS Overview

A micro-kernel RTOS written in C++
Features supported

Multi-threaded processes
IPC (message passing, mailboxes and shared 
memory)
Semaphores and condition variables
Communication protocol stacks
Optimized context switching and interrupt 
handling
User level device drivers
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Scheduling in embedded applications

1st try: cyclic time-slice scheduling
Calculate entire schedule offline
Modification of schedule due to task characteristic 
change is difficult and costly
High-priority aperiodic task has poor response 
time
Result in large time-slice schedules if work load 
contains short and long period tasks
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CSD Scheduler

Priority driven scheduler: a combination of 
EDF and RM

2 components of task scheduler overhead
Run-time overhead
Schedulability overhead
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Run-time overhead

Time consumed by executing scheduler code
Parsing queue tasks, add/delete tasks from queue
Blocking overhead (∆tb)
Unblocking overhead (∆tu)
Selection overhead (∆ts)

Total overhead in each period when blocking system 
calls are used

∆t = 1.5(∆tb + ∆tu + 2∆ts)
Total workload utilization

U = ∑ (Ci + ∆t)/Pi, i = 1 ~ n
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Overhead comparison between EDF and 
RM

EDF overhead (single, unsorted queue)
∆tb, ∆tu: O(1)
∆ts: O(n)

RM overhead (single, sorted queue)
∆tb: O(n) (set pointer point to next ready task)
∆tu: O(1)
∆ts: O(1) 

RM has significant less run-time overhead than EDF 
since

∆t = 1.5(∆tb + ∆tu + 2∆ts)
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Schedulability overhead

Defined as 1 – U*, where U* is the idea 
schedulable utilization
Utilization U = ∑ ci/Pi, i = 1 ~ n
U* = 1 for EDF → no schdulability overhead
U* = 0.88 (0.69!?) for RM
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CSD: a mixed approach

CSD = Combined Static/Dynamic
Given a workload, it may be feasible under 
EDF but not RM
Identify the “trouble maker”: the task that is 
schedulable in EDF but infeasible in RM

Use EDF for tasks that has higher rate up to the 
troublesome task
Use RM for the remaining tasks
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Example workload

i 1 2 3 4 5 6 7 8 9 10

Pi

(ms) 4 5 6 7 8 20 30 50 100 130

ci

(ms) 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5
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CSD (con’t)

Maintain 2 queues of tasks
Dynamic priority (DP) queue for EDF
Fixed priority (FP) queue for RM

DP queue is given higher priority
Execute tasks in DP queue if at least one task is 
ready
Otherwise pick one from FP queue with highest 
priority ready task
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Run-time overhead of CSD

4 possible cases
DP task blocks: ∆tb = O(1), ∆ts = O(r)
DP task unblocks: ∆tu = O(1), ∆ts = O(r)
FP task blocks: ∆tb = O(n-r), ∆ts = O(1)
FP task unblocks: ∆tu = O(1), ∆ts = O(r)

Total CSD overhead
∆tb + ∆ts_block + ∆tu + ∆ts_unblock

DP: O(1) + O(r) + O(1) + O(r) = 2O(r)
FP: O(n-r) + O(1) + O(1) + O(r) = O(n)



4/28/2005 CMSC 691S Real-Time Systems 15

Reducing CSD run-time overhead

CSD reduces runtime overhead by keeping 
DP queue length short
As number of tasks increases, performance 
degrades rapidly
Solution: split DP queue into sub-queues
CSD-3: 2 DP queues (DP1 & DP2) + 1 FP 
queue

DP1 contains tasks having the shortest periods, 
reduction in overhead greatly improves 
performance
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Task allocating into sub queues

When tasks have different periods
Keep only few tasks in DP1 to keep ∆t(DP1) small
Multiple DP queues will result in non-zero 
schedulability overhead

Beyond CSD-3
Increase in schedulability overhead will exceed 
reduction in runtime overhead as number of 
queues gets larger
2 extreme cases: 1 queue and n queues are 
equivalent to RM 
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CSD Performance
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CSD Performance (period scale down by 2)
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CSD Performance (period scale down by 3)
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Semaphore Implementation

Standard semaphore implementation

If (sem locked)

{

do priority inheritance;

add caller thread to wait queue;

block; //and wait for sem to be released
}

Lock sem
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Semaphore Implementation (Con’t)

Need Priority inheritance to avoid unbounded 
priority inversion
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Reduce context switches
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Reduce context switches (Con’t)

Rethink priority inheritance for both DP and 
FP tasks
Letting lower priority task who holds 
semaphore continue to execute
Passing extra parameter to indicate which 
semaphore to lock when calling 
acquire_sem()



4/28/2005 CMSC 691S Real-Time Systems 24

Reducing Context switches for FP tasks

O(n-r) complexity for normal queue operation
Optimizing priority inheritance to O(1)

Insert T1 directly ahead of T2 (T1 inherits T2’s priority)
Swap position in queue between T1 and T2 (return T1 to its 
original priority)

If thread T3 came in while T1 inherits T2’s priority
Swap between T1 and T3, and put T2 back

Require FP to keep ready and blocked tasks in the 
same queue
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Analysis of new scheme

What if thread T2 does not block on 
acquire_sem?
Is it save to delay T2?
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What if T1 has higher priority?

T2 incurs full overhead of acquire_sem()
Sol: block T2 when higher priority thread locks 
S, and unblock T2 when S is released



4/28/2005 CMSC 691S Real-Time Systems 27

Semaphore scheme performance (DP)
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Semaphore scheme performance (FP)
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Inter-task communication

Traditional Mechanism: mailbox
Invoke system call to send message
High overhead
Need to send same message multiple times to 
multiple tasks

Solutions
Global variables
State message passing  
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State message semantics

Solve single writer, multiple reader problem
A mailbox is associated with a writer

One writer sends message to SMmailbox
Multiple readers can receive message
New message overwrites old one
Reads do not consume message
Both reads and writes are non-blocking
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State message implementation

B: max number of bytes CPU can read/write
L: message length
Simple case: L ≤ B
If L > B

assign N-deep circular buffer to each state 
message
Each message has a 1-byte index
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Calculate buffer depth N

x: number of write operations can occur while 
reader is blocked

N = max(2, xmax + 1)
maxReadTime = d – (c - cr) = (d – c) + cr

d: deadline
c: execution time
cr: read execution time
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Calculate max write times

xmax -1 = floor[(maxReadTime – (Pw - dw))/Pw]
pw: writer’s period
dw: writer’s deadline
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Conclusions

EMERALDS provides key OS services with 
significantly lower overhead

CSD scheduler creates balance between static 
and dynamic scheduling
New semaphore reduces context switch and 
priority inheritance overhead by 20~30%
State-message paradigm incurs ¼~1/5 overhead

Future work
Networking issues
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