
Reading Assignment #1
Marcella Wilson

“Bounding Completion Times of
Jobs with Arbitrary Release Times

and Variable Execution Times”

Jun Sun and Jane W. S. Liu

Three Algorithms
Algorithm ERT (effective response times)

Algorithm CJA (critical job)

Algorithm ITR (iteratively applies
Algorithm CJA)

Completion time bound, complexity

Why is bounding completion time so
important?

A good way to validate system timing
constraints

Guarantee responsiveness of the system

The job can complete on time

What’s original in this paper?
Ha’s work studies validation problem in
distributed system

System proven to be predictable

This paper studies validation problem in
single processor

System proven to be unpredictable

Provides tighter bounds on algorithms
than Ha’s algorithms

Unpredictable System
A job chain can have various schedules
Difficult to find exact worst-case for job
chain
All jobs can have max execution time,
but all jobs may not have worst-case
completion times – unpredictable!
Focus - finding upper bounds of job
completion times

Assumptions
Job chain – set of jobs, a job cannot
execute until the job before it completes

Independent chain
1st job in chain has no predecessors
No precedence constraints between 2 jobs in
different chains

Each job has a fixed priority, preemptible

Assumptions
Release time, ri,j

occurs immediately when its predecessor
completes

Ready time, yi,j
when job released or predecessor completes
(whatever is later)

Completion time, ci,j

Execution time, [e+
i,j, e-i,j]

range, actual execution time unknown

Assumptions
Response time = completion time -
release time

Interval (ri,j, ci,j)

Effective response time = completion time
– ready time

Interval (yi,j, ci,j)

Algorithm ERT
What does it do?

Bounds the effective response time first

Then derives a completion time bound (based
on the effective response time

Algorithm ERT
2 Job Chains: Ji and Jk

Target job, Ji,j, in job chain Ji

Jobs that can execute during Ji interval
(yi,j, ci,j)

Jobs have higher priority that Ji,j

Jobs in another job chain

Algorithm ERT (cont)
Jk divided into subchains called
interference blocks
Jk has mk interference blocks

Shaded-jobs with priority lower than Ji,j

White – jobs with priority equal to or higher
than Ji,j

Algorithm ERT (cont)
Only 1 interference block can execute in interval

Now we can bound the execution time of all the
jobs in Jk that can delay the completion time of
Ji,j

First, find max time Jk can delay Ji,j
Mk,l = sum of max execution times of jobs in lth
interference block of Jk

Max amount of time that Ji,j can be delayed by jobs in Jk
is never more than max of Mk,l

Algorithm ERT (cont)
But this shows how one job chain Jk is
effecting target job Ji,j

We can bound the execution time of all
the jobs in all the job chains that can
delay the completion time of Ji,j

Algorithm ERT (cont)
Max delay all jobs chains (except Ji) can
delay Ji,j

Give max total execution time of all jobs
(except Ji,j) that can execute in interval

Algorithm Interference computes inter(Ji,j, J)

Max total delay that Ji,j might suffer

Algorithm Interference
1. Inter = 0
2. For every job chain Jk (k ≠ i)

1. Identify interference blocks in Jk

2. Compute Mk,l, sum of the max execution
times of jobs in the lth interference block in
Jk

3. Inter = inter + max1≤l ≤mk{Mk,I}

3. Return inter

How to bound completion times
inter(Ji,j, J) allows interval (yi,j, ci,j) –
effective response time – to be bounded
Max delay each job can suffer

If first job in chain
Ci,1= ri,1 + e+

i,1 + inter(Ji,j, J)

If not first job in chain
Ci,j= max{Ci,j-1 ri,j} + e+

i,1 + inter(Ji,j, J)

Use equations to find completion time
bound for each job

Final Thoughts on Algorithm ERT
Runs in O(N2) time

In bounding completion time of a job, the
same delay may be counted twice.

This problem is remedied in Algorithm CJA

Algorithm CJA
Focuses on job chain/subchain instead of
just the target job Ji,j.

Assumes worst-case schedule

Completion time using worst-case
schedule

ri,k + (ri,k, ci,5)
Interval (ri,k, ci,5)

Algorithm CJA
Critical job of each target job, Ji,j

Last job in Ji whose ready time equals its release time

Critical interval [ri,c(j), ci,j]
when critical job is released minus when target job
completes

Bounding duration of critical interval gives tighter
bound on completion time of Ji,j.

Jobs that can execute in the critical interval
Not in job chain Ji

have priorities greater than or equal to Ji,low

How is the completion time bounded?
Assumes each predecessor of Ji,j and Ji,j
itself is critical job.

Find the lowest priority among jobs.

Compute bi,k = ri,k+ ∑e+
i,l + inter(Ji,low,J)

Takes the max of the bounds, one of these
bounds must be correct.

Algorithm CJA Example
Use Algorithm CJA to bound completion
time of Ji,3.

Let Ji,1 be the critical job. Find job with the
lowest priority (Ji,1). Apply equation = 160.
Let Ji,2 be the critical job. Find job with the
lowest priority (Ji,3). Apply equation = 140.
Let Ji,3 be the critical job. Find job with the
lowest priority (Ji,3). Apply equation = 185.
Final bound is max of {160, 140, 185} = 185.

Final Thoughts on Algorithm CJA
Each bound of Algorithm CJA is always
tighter than the corresponding one
computed by Algorithm ERT

Higher complexity - O(N3)

Algorithm ITR
Previous algorithms flaw - Release time of
jobs not taken into account.

Result – Jobs whose release time is later
than the target job’s completion time are
considered.

Solution - Don’t consider jobs that cannot
interfere with execution of target job.

Algorithm ITR
Remove jobs that do not execute in the
critical interval of target job.

Use Algorithm Interference on to obtain
tighter bound on max delays target job
may suffer.

Two approaches
Pessimistic iteration
Optimistic iteration

Pessimistic Iteration
First, use Algorithm CJA to get initial
completion time bound for each job

Then, iteratively apply modified Algorithm
CJA to get new completion time bounds

Removes jobs that don’t execute in critical
interval of target job

Iteration stops new bounds in current step
equal bounds in previous step

Problem with Pessimistic Iteration
Sometimes, jobs that should be pruned,
are not.

Generally, but doesn’t always, improves
the completion time bounds

Optimistic Iteration
First, gets an optimistic bound

Assumes each job interfered only by jobs in
same job chain.

Then, iteratively apply modified Algorithm
CJA to get new completion time bounds

Based on bounds from previous or initial step

Iteration stops when new bounds =
corresponding bounds in earlier step

Algorithm ITR
Has the tightest bounds of all the
algorithms

Worst time complexity - O(N6)

Works best for off-line schedulability
analysis

Thank you for your attention.
Any questions?

	Reading Assignment #1
	“Bounding Completion Times of Jobs with Arbitrary Release Times and Variable Execution Times”
	Three Algorithms
	Why is bounding completion time so important?
	What’s original in this paper?
	Unpredictable System
	Assumptions
	Assumptions
	Assumptions
	Algorithm ERT
	Algorithm ERT
	Algorithm ERT (cont)
	Algorithm ERT (cont)
	Algorithm ERT (cont)
	Algorithm ERT (cont)
	Algorithm Interference
	How to bound completion times
	Final Thoughts on Algorithm ERT
	Algorithm CJA
	Algorithm CJA
	How is the completion time bounded?
	Algorithm CJA Example
	Final Thoughts on Algorithm CJA
	Algorithm ITR
	Algorithm ITR
	Pessimistic Iteration
	Problem with Pessimistic Iteration
	Optimistic Iteration
	Algorithm ITR
	Thank you for your attention.Any questions?

