“Bounding Completion Times of Jobs with Arbitrary Release Times and Variable Execution Times”

Jun Sun and Jane W. S. Liu
Three Algorithms

- Algorithm ERT (effective response times)
- Algorithm CJA (critical job)
- Algorithm ITR (iteratively applies Algorithm CJA)
 - Completion time bound, complexity
Why is bounding completion time so important?

- A good way to validate system timing constraints
- Guarantee responsiveness of the system
- The job can complete on time
What’s original in this paper?

- Ha’s work studies validation problem in distributed system
 - System proven to be predictable

- This paper studies validation problem in single processor
 - System proven to be unpredictable

- Provides tighter bounds on algorithms than Ha’s algorithms
Unpredictable System

- A job chain can have various schedules
- Difficult to find exact worst-case for job chain
- All jobs can have max execution time, but all jobs may not have worst-case completion times – unpredictable!
- Focus - finding upper bounds of job completion times
Assumptions

- Job chain – set of jobs, a job cannot execute until the job before it completes

- Independent chain
 - 1st job in chain has no predecessors
 - No precedence constraints between 2 jobs in different chains

- Each job has a fixed priority, preemptible
Assumptions

- **Release time,** \(r_{i,j} \)
 - occurs immediately when its predecessor completes

- **Ready time,** \(y_{i,j} \)
 - when job released or predecessor completes (whatever is later)

- **Completion time,** \(c_{i,j} \)

- **Execution time,** \([e^+_{i,j}, e^-_{i,j}] \)
 - range, actual execution time unknown
Assumptions

- Response time $=\text{completion time} - \text{release time}$
 - Interval $(r_{i,j}, c_{i,j})$

- Effective response time $=\text{completion time} - \text{ready time}$
 - Interval $(y_{i,j}, c_{i,j})$
Algorithm ERT

- What does it do?
 - Bounds the effective response time first
 - Then derives a completion time bound (based on the effective response time)
Algorithm ERT

- 2 Job Chains: J_i and J_k
- Target job, $J_{i,j}$, in job chain J_i
- Jobs that can execute during J_i interval $(y_{i,j}, c_{i,j})$
 - Jobs have higher priority than $J_{i,j}$
 - Jobs in another job chain
Algorithm ERT (cont)

- J_k divided into subchains called interference blocks
- J_k has m_k interference blocks
 - Shaded-jobs with priority lower than $J_{i,j}$
 - White – jobs with priority equal to or higher than $J_{i,j}$
Algorithm ERT (cont)

- Only 1 interference block can execute in interval

- Now we can bound the execution time of all the jobs in J_k that can delay the completion time of $J_{i,j}$

- First, find max time J_k can delay $J_{i,j}$
 - $M_{k,l} = \text{sum of max execution times of jobs in } l\text{th interference block of } J_k$
 - Max amount of time that $J_{i,j}$ can be delayed by jobs in J_k is never more than max of $M_{k,l}$
Algorithm ERT (cont)

- But this shows how one job chain J_k is effecting target job $J_{i,j}$

- We can bound the execution time of all the jobs in all the job chains that can delay the completion time of $J_{i,j}$
Algorithm ERT (cont)

- Max delay all jobs chains (except J_i) can delay $J_{i,j}$
 - Give max total execution time of all jobs (except $J_{i,j}$) that can execute in interval

- Algorithm Interference computes $\text{inter}(J_{i,j}, J)$

- Max total delay that $J_{i,j}$ might suffer
Algorithm Interference

1. Inter = 0

2. For every job chain J_k ($k \neq i$)
 1. Identify interference blocks in J_k
 2. Compute $M_{k,l}$, sum of the max execution times of jobs in the lth interference block in J_k
 3. Inter = inter + $\max_{1 \leq l \leq m_k}\{M_{k,l}\}$

3. Return inter
How to bound completion times

- \(\text{inter}(J_{i,j}, J) \) allows interval \((y_{i,j}, c_{i,j})\) – effective response time – to be bounded

- Max delay each job can suffer
 - If first job in chain
 - \(C_{i,1} = r_{i,1} + e_{i,1} + \text{inter}(J_{i,j}, J) \)
 - If not first job in chain
 - \(C_{i,j} = \max \{ C_{i,j-1} + r_{i,j} \} + e_{i,1} + \text{inter}(J_{i,j}, J) \)

- Use equations to find completion time bound for each job
Final Thoughts on Algorithm ERT

- Runs in $O(N^2)$ time

- In bounding completion time of a job, the same delay may be counted twice.

- This problem is remedied in Algorithm CJA
Algorithm CJA

- Focuses on job chain/subchain instead of just the target job $J_{i,j}$.

- Assumes worst-case schedule

- Completion time using worst-case schedule
 - $r_{i,k} + (r_{i,k}, c_{i,5})$
 - Interval $(r_{i,k}, c_{i,5})$
Algorithm CJA

- **Critical job** of each target job, \(J_{i,j} \)
 - Last job in \(J_i \) whose ready time equals its release time

- **Critical interval** \([r_{i,c(j)}, c_{i,j}]\)
 - when critical job is released minus when target job completes

- Bounding duration of critical interval gives tighter bound on completion time of \(J_{i,j} \).

- Jobs that can execute in the critical interval
 - Not in job chain \(J_i \)
 - have priorities greater than or equal to \(J_{i,\text{low}} \)
How is the completion time bounded?

- Assumes each predecessor of $J_{i,j}$ and $J_{i,j}$ itself is critical job.

- Find the lowest priority among jobs.

- Compute $b_{i,k} = r_{i,k} + \sum e^{+}_{i,l} + \text{inter}(J_{i,\text{low,J}})$

- Takes the max of the bounds, one of these bounds must be correct.
Algorithm CJA Example

- Use Algorithm CJA to bound completion time of $J_{i,3}$.
 - Let $J_{i,1}$ be the critical job. Find job with the lowest priority ($J_{i,1}$). Apply equation $= 160$.
 - Let $J_{i,2}$ be the critical job. Find job with the lowest priority ($J_{i,3}$). Apply equation $= 140$.
 - Let $J_{i,3}$ be the critical job. Find job with the lowest priority ($J_{i,3}$). Apply equation $= 185$.
 - Final bound is max of $\{160, 140, 185\} = 185$.
Final Thoughts on Algorithm CJA

- Each bound of Algorithm CJA is always tighter than the corresponding one computed by Algorithm ERT

- Higher complexity - $O(N^3)$
Algorithm ITR

- Previous algorithms flaw - Release time of jobs not taken into account.

- Result – Jobs whose release time is later than the target job’s completion time are considered.

- Solution - Don’t consider jobs that cannot interfere with execution of target job.
Algorithm ITR

- Remove jobs that do not execute in the critical interval of target job.
- Use Algorithm Interference on to obtain tighter bound on max delays target job may suffer.
- Two approaches
 - Pessimistic iteration
 - Optimistic iteration
Pessimistic Iteration

- First, use Algorithm CJA to get initial completion time bound for each job
- Then, iteratively apply modified Algorithm CJA to get new completion time bounds
 - Removes jobs that don’t execute in critical interval of target job
- Iteration stops new bounds in current step equal bounds in previous step
Problem with Pessimistic Iteration

- Sometimes, jobs that should be pruned, are not.

- Generally, but doesn’t always, improves the completion time bounds.
Optimistic Iteration

- First, gets an optimistic bound
 - Assumes each job interfered only by jobs in the same job chain.

- Then, iteratively apply modified Algorithm CJA to get new completion time bounds
 - Based on bounds from previous or initial step

- Iteration stops when new bounds = corresponding bounds in earlier step
Algorithm ITR

- Has the tightest bounds of all the algorithms
- Worst time complexity - $O(N^6)$
- Works best for off-line schedulability analysis
Thank you for your attention.
Any questions?