
System Architecture
Directions for Networked
Sensors

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, Kristofer Pister

University of California, Berkeley

Presented by : Aseem Lalani

4/28/2005 2

Outline

Introduction
Paper Contribution
Network Sensor Characteristics
Example Design Point
TinyOS Design Issues
Illustration
Evaluation
Architectural Implications & Conclusions

4/28/2005 3

Introduction
• Trends that need to work together to enable the networked

sensor
Smaller, Cheaper, Low Power Unit
Complete systems on a chip
Integrated low-power communication
Integrated low-power transducers

• Building Block now includes not just memory and
processing but also DAC’s, ADC’s, UART’s, interrupt
controller and counters.

• Communication can take the form of wired, short-range RF,
infrared, optical etc.

• Networked sensors can be constructed of just square inch
size and using fraction of a watt in power.

4/28/2005 4

Paper Contribution
• Initial Exploration of system architecture for networked

sensors.
• Development of a tiny microthread operating system called

“TinyOS” which addresses the two core issues viz.
Concurrency Intensive: Several Flows of data must be kept moving
simultaneously
Efficient Modularity: Hardware specific and application specific
components must snap together with little processing and storage
overhead.

4/28/2005 5

Networked Sensor Characteristics
• Small physical size and low power consumption
• Concurrency-intensive operation
• Limited Physical Parallelism and Control

Hierarchy
• Diversity in Design and Usage
• Robust Operation

4/28/2005 6

Small physical size and low power
consumption & Concurrency-intensive
operation

• Size and Power constrain the processing, storage and
interconnect capability of the basic device. Reducing size and
power thus forms the driving force in hardware design

• Software must make efficient use of processor and memory
while enabling low power communication.

• Primary mode of operation for these devices is to flow
information from place to place with a modest amount of
processing on-the-fly.

• Does not involve accepting commands, stop, think, respond.
• Information is simultaneously captured from sensors,

manipulated and streamed onto a network.

4/28/2005 7

Limited Physical Parallelism and Control
Hierarchy & Diversity in Design and Usage

• Number of independent controllers, capabilities of those
controllers and the sophistication of the processor-memory-
switch level interconnect are much lower than conventional
systems.

• Typically, sensor provides primitive interface directly to a
single-chip microcontroller.

• Sensor devices are application specific.
• Need to assemble only the software components required to

synthesize the application from the hardware components.
• Need for unusual degree of software modularity.

4/28/2005 8

Robust Operation

• Sensor networks are generally formed by deploying large
numbers of unattended sensors forming an application specific
network.

• Reliability is achieved by using redundancy in sensors
deployed.

• Such redundancy cannot be used within individual sensors due
to lack of space and power.

• However a failure in this case may cost huge communication
cost.

• Requirement of the application to tolerate individual device
failures (robustness).

• Operating systems running on single node should facilitate the
development of reliable distributed applications.

4/28/2005 9

Example Design Point

•8-bit ATMEL 90LS8535
processor with 16-bit
addresses, 32 8-bit general
purpose registers and runs at
4 MHz and 3.0 V working in
idle, power down and power
save modes.

•8 KB of flash as program
memory

•512 bytes of SRAM as data
memory

4/28/2005 10

Example Design Point

•3 LED outputs connected
through general I/O ports
used to display digital values
or status.

•Photo sensor representing
the analog input.

•Radio representing an
asynchronous I/O device with
hard real time constraints
working in transmit, receive or
power-off modes with no
buffering and no latching.

4/28/2005 11

Example Design Point

•Temperature sensor (analog)
having internal A/D converter
unlike the Light Sensor.

•Serial to Parallel conversion
using UART (Universal
Asynchronous Transmitter
Receiver)

•Co-processor AT90L2313
connected using SPI (Serial
Peripheral Interface)

4/28/2005 12

Tiny MicroThreading Operating
System (TinyOS)
• Driving force behind TinyOS

Hardware Constraints
Small Physical Size
Modest Active Power Load
Tiny inactive load

Software Constraints
Manage hardware capabilities effectively
Support concurrency-intensive operation
Provide efficient modularity and robustness

Inability to use existing embedded device operating systems for
above constraints.

4/28/2005 13

TinyOS Design
• System Configuration consists of

— Tiny Scheduler
— Graph of components

◦ Set of Command Handlers
◦ Set of Event Handlers
◦ Encapsulated fixed-size frame
◦ Bundle of simple tasks

• Some Definitions
— Commands: Non-Blocking Requests made to lower level components

◦ Commands deposit request parameters onto its frame and
conditionally post a task for later execution

◦ It may invoke lower commands
◦ Must provide feedback to caller indicating a success or not e.g.:

buffer overrun.

4/28/2005 14

TinyOS Design
— Events Handlers: Used to deal with hardware events either directly

or indirectly.
◦ Lowest level components have handlers connected directly to

hardware interrupts e.g.: timer events, counter events.
◦ They deposit information into its frame, posts tasks, signal higher

level events or call lower level commands.
◦ Hardware event may flow upwards by calling higher level events or

downwards by calling lower level commands.
◦ Cycles are avoided in command/event chain by enforcing that

commands cannot signal events (but not vice-versa).
◦ Both commands and events perform small fixed amount of work

within the context of their component’s state.

— Tasks: Primary work is done by tasks
◦ Atomic w.r.t. other tasks and run to completion although they can be

pre-empted.
◦ Tasks can call lower level commands, signal higher level events and

schedule other tasks within a component.
◦ Simulate concurrency within each component since they execute

asynchronously w.r.t. events.

4/28/2005 15

TinyOS Design
— Task Scheduler: FIFO scheduler utilizing a bounded size scheduling

data structure.
◦ More sophisticated structures like priority-based or deadline-based

could be used.
◦ Processor is put to sleep when task queue is empty while peripherals

remain operating (for efficient battery usage).

Example Component
- Block of State (component frame)

- Set of commands (upside-down
triangles)

- Set of Handlers (triangles)

- Commands used by Handlers
(Solid downward arcs)

- Events signaled by Handlers
(dashed upward arcs)

4/28/2005 16

Component Types

Sample Configuration of a networked sensor

4/28/2005 17

Component Types
• Hardware Abstractions

— Map physical hardware to the component model.
— e.g.: RFM radio component

◦ Exports commands to manipulate the individual pins connected to
RFM transceiver and posts events informing other components about
the transmission and reception of bits.

◦ RFM consumes hardware interrupts to transform into either
RX_bit_evt or TX_bit_evt.

• Synthetic Hardware
— Simulate behavior or advanced hardware.
— e.g.: Radio Byte component

◦ It shifts data into or out of underlying RFM module and signals when
an entire byte has completed.

◦ May involve simple encoding and decoding of data.
◦ At a higher level, it may be thought as UART hardware abstraction

since it provides similar interface and functionalities.

4/28/2005 18

Component Types
• High Level Software Components

— Perform control, routing and all data transformation.
— e.g.: Messaging module explained in earlier section

◦ Performs filling in a packet buffer prior to transmission and
dispatches received messages to their appropriate place.

◦ Components that perform calculations on data or data aggregation
also fall into this category.

4/28/2005 19

Illustrate interaction of components
Sensors are distributed in a localized area.
They monitor temperature and light conditions and periodically
transmit measurements to central base station (data source).
Forwards data for sensors which are out of range of the base
station (multi-hop).
Basic Idea:
o Broadcast application data in the form of fixed action messages.
o If receiver is intermediate hop en-route to base station, the

message handler initiates retransmission of message to the next
recipient.

o At the base station, the handler forwards the packet to the
attached computer.

o Base station periodically broadcasts route information.
o At each device, the three significant events are: arrival of route

update, arrival of message that needs to be forwarded and
collection of new data.

4/28/2005 20

Illustrate interaction of components
Thousands of events are flowing through each sensor.
Timer event defines the start of data collection.
Application uses messaging layer’s send_message command to
initiate transfer.
Command records message location and schedules a task to
handle the transmission.
Task composes the packet and initiates a downward chain of
commands by calling TX_packet command in the packet
component
In turn the command calls TX_byte within the Radio Byte
component to start byte-by-byte transmission.
Radio Byte Component prepares for transmission by putting
RFM component into transmission state and schedules
encode_task to prepare byte for transmission.

4/28/2005 21

Illustrate interaction of components

encode_task encodes the data and sends first bit of data to the
RFM component for transmission.
Radio Byte acts as data drain providing bits to RFM in response
to TX_bit_evt event.
On completion of byte transmission, TX_bit_evt signal is
propagated to the packet level controller through
TX_byte_done event.
When all bytes of the packet have been drained, the packet
level will signal TX_packet_done to the application level which
will signal the msg_send_done event.
Transmission process reversed for reception purposes.

4/28/2005 22

Evaluation
Small Physical Size:

- TinyOS Scheduler occupies only 178 bytes
and the complete network sensor application
requires only about 3 KB of Instruction
memory

- Data Size of Scheduler is only 16 bytes
which utilizes only 3% of available Data
memory.

- Entire application comes in at 226 bytes
which is still under 50% of the 512 bytes
available.

4/28/2005 23

Evaluation
Concurrency Intensive Operations:

- Network sensors need to handle
multiple simultaneous flows.

- Table shows context switch speed
calibrated against intrinsic hardware
cost for moving bytes in memory

- Posting a task and switching context costs about as much as
moving 6 bytes of memory

- Most expensive are interrupts particularly software operations which
involve saving and restoring of registers.

4/28/2005 24

Evaluation
Efficient Modularity:

Events and commands
propagate through
components quickly.

Figure shows dynamic
composition of the
crossings.

0. Hardware interrupt timer at step 0.
1. TX_bit_evt propagates event into byte level processing.
2. Handler issues command to transmit final bit and fire TX_byte_ready.
3. TX_packet_done.
4. send_msg command has finished.
5. Post a task send_msg_task to send the packet
6. Prepare message and send.

4/28/2005 25

Evaluation
Limited physical parallelism and controller hierarchy:

- Processor is still idle 50% of the time under
highly active periods.

- e.g.: low level bit and byte processing
utilize significant CPU resources but the CPU
is not the system bottleneck.

- If bit-level functions were implemented on
separate microcontroller, a performance
gain is not expected because of radio
bandwidth limitations.

- Additional power/time incurred in
transferring data between microcontrollers.

- If components were implemented by dedicated hardware, we would be
able to make several power saving design choices including sleeping or
lowering the frequency of the processor.

4/28/2005 26

Evaluation
Diversity in usage and robust operation:

- Versatility of architecture tested by creating sample applications that
exploit the modular structure of the system.

- Ability to target multiple CPU architectures in future systems by
developing the system in C.

- Multi-hop routing application automatically reconfigures itself to
withstand individual node failures so that sensor network as a whole is
robust.

4/28/2005 27

Architectural Implications &
Conclusions

Authors show that its possible to have multiple flows of data using single
microcontroller and hence using multiple microcontrollers is a option and
not a requirement.
The interconnect between multiple microcontrollers will need to support
an efficient event based communication model.
Authors conclude that Bit level processing cannot achieve same data
transfer rates as Bluetooth and hence the Radio Byte component needs to
become a hardware abstraction rather than synthetic hardware.
Inclusion of additional hardware support for events would make a
significant performance impact. E.g.: additional set of registers for the
execution of events would save about 20% of CPU load (meaning lower
power consumption or higher performance).
Reconfigurable computing in the future will require implementing
interconnect and controller hierarchy (integrated onto a chip) using
FPGA’s trivially rather than UART’s and DMA’s.
Authors thus attempt to provide a systematic analysis architectural
alternatives in the network sensor regime.

	System Architecture Directions for Networked Sensors
	Outline
	Introduction
	Paper Contribution
	Networked Sensor Characteristics
	Small physical size and low power consumption & Concurrency-intensive operation
	Limited Physical Parallelism and Control Hierarchy & Diversity in Design and Usage
	Robust Operation
	Example Design Point
	Example Design Point
	Example Design Point
	Tiny MicroThreading Operating System (TinyOS)
	TinyOS Design
	TinyOS Design
	TinyOS Design
	Component Types
	Component Types
	Component Types
	Illustrate interaction of components
	Illustrate interaction of components
	Illustrate interaction of components
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Architectural Implications & Conclusions

