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Introduction
• Trends that need to work together to enable the networked 

sensor
Smaller, Cheaper, Low Power Unit
Complete systems on a chip
Integrated low-power communication
Integrated low-power transducers

• Building Block now includes not just memory and 
processing but also DAC’s, ADC’s, UART’s, interrupt 
controller and counters.

• Communication can take the form of wired, short-range RF, 
infrared, optical etc.

• Networked sensors can be constructed of just square inch 
size and using fraction of a watt in power.
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Paper Contribution
• Initial Exploration of system architecture for networked 

sensors.
• Development of a tiny microthread operating system called 

“TinyOS” which addresses the two core issues viz.
Concurrency Intensive: Several Flows of data must be kept moving
simultaneously
Efficient Modularity: Hardware specific and application specific
components must snap together with little processing and storage
overhead.
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Networked Sensor Characteristics
• Small physical size and low power consumption
• Concurrency-intensive operation
• Limited Physical Parallelism and Control 

Hierarchy
• Diversity in Design and Usage
• Robust Operation
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Small physical size and low power 
consumption & Concurrency-intensive 
operation

• Size and Power constrain the processing, storage and 
interconnect capability of  the basic device. Reducing size and 
power thus forms the driving force in hardware design

• Software must make efficient use of processor and memory 
while enabling low power communication.

• Primary mode of operation for these devices is to flow 
information from place to place with a modest amount of 
processing on-the-fly.

• Does not involve accepting commands, stop, think, respond.
• Information is simultaneously captured from sensors, 

manipulated and streamed onto a network.
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Limited Physical Parallelism and Control 
Hierarchy & Diversity in Design and Usage

• Number of independent controllers, capabilities of those 
controllers and the sophistication of the processor-memory-
switch level interconnect are much lower than conventional 
systems.

• Typically, sensor provides primitive interface directly to a 
single-chip microcontroller.

• Sensor devices are application specific.
• Need to assemble only the software components required to 

synthesize the application from the hardware components. 
• Need for unusual degree of software modularity.
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Robust Operation

• Sensor networks are generally formed by deploying large 
numbers of unattended sensors forming an application specific 
network.

• Reliability is achieved by using redundancy in sensors 
deployed.

• Such redundancy cannot be used within individual sensors due 
to lack of space and power.

• However a failure in this case may cost huge communication 
cost.

• Requirement of the application to tolerate individual device 
failures (robustness).

• Operating systems running on single node should facilitate the 
development of reliable distributed applications.
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Example Design Point

•8-bit ATMEL 90LS8535 
processor with 16-bit 
addresses, 32 8-bit general 
purpose registers and runs at 
4 MHz and 3.0 V working in 
idle, power down and power 
save modes.

•8 KB of flash as program 
memory

•512 bytes of SRAM as data 
memory 
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Example Design Point

•3 LED outputs connected 
through general I/O ports 
used to display digital values 
or status.

•Photo sensor representing 
the analog input.

•Radio representing an 
asynchronous I/O device with 
hard real time constraints 
working in transmit, receive or 
power-off modes with no 
buffering and no latching.
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Example Design Point

•Temperature sensor (analog) 
having internal A/D converter 
unlike the Light Sensor.

•Serial to Parallel conversion 
using UART (Universal 
Asynchronous Transmitter 
Receiver)

•Co-processor AT90L2313 
connected using SPI (Serial 
Peripheral Interface)
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Tiny MicroThreading Operating 
System (TinyOS)
• Driving force behind TinyOS

Hardware Constraints
Small Physical Size
Modest Active Power Load
Tiny inactive load

Software Constraints
Manage hardware capabilities effectively
Support concurrency-intensive operation
Provide efficient modularity and robustness

Inability to use existing embedded device operating systems for 
above constraints.
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TinyOS Design
• System Configuration consists of 

— Tiny Scheduler
— Graph of components

◦ Set of Command Handlers
◦ Set of Event Handlers
◦ Encapsulated fixed-size frame
◦ Bundle of simple tasks

• Some Definitions
— Commands: Non-Blocking Requests made to lower level components

◦ Commands deposit request parameters onto its frame and 
conditionally post a task for later execution

◦ It may invoke lower commands
◦ Must provide feedback to caller indicating a success or not e.g.: 

buffer overrun.
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TinyOS Design
— Events Handlers: Used to deal with hardware events either directly 

or indirectly.
◦ Lowest level components have handlers connected directly to 

hardware interrupts e.g.: timer events, counter events.
◦ They deposit information into its frame, posts tasks, signal higher 

level events or call lower level commands.
◦ Hardware event may flow upwards by calling higher level events or 

downwards by calling lower level commands.
◦ Cycles are avoided in command/event chain by enforcing that 

commands cannot signal events (but not vice-versa).
◦ Both commands and events perform small fixed amount of work 

within the context of their component’s state.

— Tasks: Primary work is done by tasks
◦ Atomic w.r.t. other tasks and run to completion although they can be 

pre-empted.
◦ Tasks can call lower level commands, signal higher level events and 

schedule other tasks within a component. 
◦ Simulate concurrency within each component since they execute 

asynchronously w.r.t. events.
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TinyOS Design
— Task Scheduler: FIFO scheduler utilizing a bounded size scheduling 

data structure.
◦ More sophisticated structures like priority-based or deadline-based 

could be used.
◦ Processor is put to sleep when task queue is empty while peripherals 

remain operating (for efficient battery usage).

Example Component
- Block of State (component frame)

- Set of commands (upside-down                
triangles)

- Set of Handlers (triangles)

- Commands used by Handlers 
(Solid downward arcs)

- Events signaled by Handlers 
(dashed upward arcs)
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Component Types

Sample Configuration of a networked sensor
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Component Types
• Hardware Abstractions

— Map physical hardware to the component model.
— e.g.: RFM radio component

◦ Exports commands to manipulate the individual pins connected to 
RFM transceiver and posts events informing other components about 
the transmission and reception of bits.

◦ RFM consumes hardware interrupts to  transform into either 
RX_bit_evt or TX_bit_evt.

• Synthetic Hardware
— Simulate behavior or advanced hardware.
— e.g.: Radio Byte component

◦ It shifts data into or out of underlying RFM module and signals when 
an entire byte has completed. 

◦ May involve simple encoding and decoding of data.
◦ At a higher level, it may be thought as UART hardware abstraction 

since it provides similar interface and functionalities.
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Component Types
• High Level Software Components

— Perform control, routing and all data transformation.
— e.g.: Messaging module explained in earlier section

◦ Performs filling in a packet buffer prior to transmission and 
dispatches received messages to their appropriate place.

◦ Components that perform calculations on data or data aggregation
also fall into this category.
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Illustrate interaction of components
Sensors are distributed in a localized area.
They monitor temperature and light conditions and periodically 
transmit measurements to central base station (data source).
Forwards data for sensors which are out of range of the base 
station (multi-hop).
Basic Idea: 
o Broadcast application data in the form of fixed action messages.
o If receiver is intermediate hop en-route to base station, the 

message handler initiates retransmission of message to the next 
recipient.

o At the base station, the handler forwards the packet to the 
attached computer.

o Base station periodically broadcasts route information.
o At each device, the three significant events are: arrival of route 

update, arrival of message that needs to be forwarded and 
collection of new data.
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Illustrate interaction of components
Thousands of events are flowing through each sensor.
Timer event defines the start of data collection.
Application uses messaging layer’s send_message command to 
initiate transfer.
Command records message location and schedules a task to 
handle the transmission.
Task composes the packet and initiates a downward chain of 
commands by calling TX_packet command in the packet 
component
In turn the command calls TX_byte within the Radio Byte 
component to start byte-by-byte transmission.
Radio Byte Component prepares for transmission by putting 
RFM component into transmission state and schedules 
encode_task to prepare byte for transmission.
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Illustrate interaction of components

encode_task encodes the data and sends first bit of data to the
RFM component for transmission.
Radio Byte acts as data drain providing bits to RFM in response 
to TX_bit_evt event.
On completion of byte transmission, TX_bit_evt signal is 
propagated to the packet level controller through 
TX_byte_done event.
When all bytes of the packet have been drained, the packet 
level will signal TX_packet_done to the application level which 
will signal the msg_send_done event.
Transmission process reversed for reception purposes.
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Evaluation
Small Physical Size:

- TinyOS Scheduler occupies only 178 bytes
and the complete network sensor application 
requires only about 3 KB of Instruction 
memory

- Data Size of Scheduler is only 16 bytes 
which utilizes only 3% of available Data 
memory.

- Entire application comes in at 226 bytes 
which is still under 50% of the 512 bytes
available.
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Evaluation
Concurrency Intensive Operations:

- Network sensors need to handle
multiple simultaneous flows. 

- Table shows context switch speed
calibrated against intrinsic hardware 
cost for moving bytes in memory

- Posting a task and switching context costs about as much as
moving 6 bytes of memory

- Most expensive are interrupts particularly software operations which
involve saving and restoring of  registers.
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Evaluation
Efficient Modularity:

Events and commands 
propagate through 
components quickly.

Figure shows dynamic 
composition of the 
crossings.

0. Hardware interrupt timer at step 0.
1. TX_bit_evt propagates event into byte level processing.
2. Handler issues command to transmit final bit and fire TX_byte_ready.
3. TX_packet_done.
4. send_msg command has finished.
5. Post a task send_msg_task to send  the packet
6. Prepare message and send.
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Evaluation
Limited physical parallelism and controller hierarchy:

- Processor is still idle 50% of the time under
highly active periods.

- e.g.: low level bit and byte processing 
utilize significant CPU resources but the CPU
is not the system bottleneck.

- If bit-level functions were implemented on 
separate microcontroller, a performance 
gain is not expected because of radio  
bandwidth limitations.

- Additional power/time incurred in 
transferring data between microcontrollers.

- If components were implemented by dedicated hardware, we would be 
able  to make several power saving design choices including sleeping or 
lowering the frequency of the processor.
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Evaluation
Diversity in usage and robust operation:

- Versatility of architecture tested by creating sample applications that 
exploit the modular structure of the system.

- Ability to target multiple CPU architectures in future systems by 
developing the system in C.

- Multi-hop routing application automatically reconfigures itself to 
withstand individual node failures so that sensor network as a whole is 
robust.
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Architectural Implications & 
Conclusions

Authors show that its possible to have multiple flows of data using single 
microcontroller and hence using multiple microcontrollers is a option and 
not a requirement.
The interconnect between multiple microcontrollers will need to support 
an efficient event based communication model.
Authors conclude that Bit level processing cannot achieve same data 
transfer rates as Bluetooth and hence the Radio Byte component needs to 
become a hardware abstraction rather than synthetic hardware.
Inclusion of additional hardware support for events would make a
significant performance impact. E.g.: additional set of registers for the 
execution of events would save about 20% of CPU load (meaning lower 
power consumption or higher performance).
Reconfigurable computing in the future will require implementing
interconnect and controller hierarchy (integrated onto a chip) using 
FPGA’s trivially rather than UART’s and DMA’s.
Authors thus attempt to provide a systematic analysis architectural 
alternatives in the network sensor regime.
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