
An Approach to Task Attribute Assignment for Uniprocessor Systems

I. Bate and A. Burns
Real-Time Systems Research Group

Department of Computer Science
University of York

York, United Kingdom
e-mail: fijb,burnsg@cs.york.ac.uk

Abstract

The purpose of this paper is to investigate the issues
related to task attribute assignment on an individual pro-
cessor. The majority of papers on fixed priority scheduling
make the assumption that tasks have their attributes (dead-
line, period, offset and priority) pre-assigned. This makes
priority assignment trivial. However in practice, the sys-
tem’s timing requirements are specified and it is expected
that the task attributes are synthesised from these. This pa-
per is to present work that has been developed to solve this
problem.

1 Introduction
A significant challenge is to derive task attributes for a

fixed priority schedule that meet the system’s timing re-
quirements in a way that can be understood by a non-
specialist. An approach is proposed for task attribute as-
signment that caters for all the likely timing requirements
of complex control systems imposed on the scheduler.

The issue of task attribute assignment for fixed priority
scheduled systems is a subject that has received compara-
tively little attention compared to other areas of real-time
research. Notable papers on the issue include, Gerber [1]
and Yerrabilli [2]. These techniques whilst powerful, are
difficult to justify, therefore a more straightforward tech-
niques would be of benefit. However, the main barrier to
the adoption of their work is that the approaches assume
all attributes are changeable. For example, the fact that in-
termediate tasks of a transaction may have other functions
outside of the transaction is ignored. For example, changing
a task’s period could cause problems.

A secondary aim of the task attribute approach is to try
and ensure that only one set of analysis (i.e. task schedula-
bility analysis) verifies all the timing characteristics of the
system. The benefit of the secondary aim is that a separate
verification tool is not needed for the transactions’ timing
requirements.

There are a number of parts to the paper. Section 2 pro-
vides a description of the system’s timing requirements that
are to be met. Section 3 derives analysis for proving trans-
actions are met based on the task set’s attributes. Section
4 investigates how transaction requirements may be met in
a uniprocessor systems in two cases. The two cases are;
when the transaction deadline is less than or equal to the
tasks’ (that form the transaction) periods, and when trans-
action deadline is greater than the tasks’ periods. Section 5
investigates how a task’s jitter requirement can be met. Sec-
tion 6 investigates how tasks’ separation requirements can
be met. Finally, section 7 combines the product of the ear-
lier sections to provide an overall approach to task attribute
assignment.

2 The System’s Timing Requirements
An evaluation of industrial practice shows there are two

principal categories of timing requirements to be consid-
ered: those associated with tasks, and those associated with
transactions.

The timing requirements for a task are:

1. Period - All tasks can be considered to have a period.
Event triggered tasks are modelled as a periodic task
whose period is equal to the task’s minimum inter-
arrival time.

2. Deadline - The deadline of a task is the maximum time
allowed from the expected task release until the com-
pletion of the task execution.

3. Jitter - The jitter constraint for a task is the allowed
variation of task completion from precise periodicity.
Jitter constraints are normally placed on the outputs
from embedded systems to ensure the occurrence of
actions does not vary too much.

4. Separation - A particular sequence of tasks may have a
minimum time separation enforced to prevent a catas-
trophic effect.



A sequence of tasks executed in a fixed order is referred
to as a transaction. The timing requirements for a transac-
tion are:

1. Period - Similar to a task, a transaction has a periodic
requirement. It is not unusual for some of the tasks
in the transaction to be executed at different rates. In
these cases, the transaction period is equal to the least
common multiple of the tasks’ (that form the transac-
tion) period. The reason the least common multiple
is chosen, rather than a lower value, is that the tasks
can only execute in the required precedence order this
often.

2. End-to-End Deadline - Transactions normally have a
requirement that all tasks are executed in a particular
order within a given amount of time.

3. Jitter - Similar to a task, a transaction may have a jitter
constraint.

A need for any scheduling policy is to have an approach
to task attribute assignment that effectively deals with these
requirements.

3 Calculating the Response Times of Trans-
actions

The scheduling model for the work contained in this pa-
per is a fixed priority scheduled system where tasks have
their priorities assigned using the Deadline Monotonic Pri-
ority Ordering (DMPO). DMPO is where tasks with the
shortest deadline have the highest priority. The schedul-
ing model allows both periodic and sporadic tasks, how-
ever some of the system’s timing requirements may logi-
cally only apply to periodic tasks, e.g. separation require-
ments.

A prime driver for the task attribute assignment is to
represent all the system’s timing requirements as task at-
tributes, i.e. if all the tasks’ deadline are met then all the
system’s timing requirements are met. Independent of this
aim, it is still useful to have analysis available that allows
transactions’ requirements to be verified. It has been shown
that it is only necessary to check the one instance of the
transaction immediately after the critical instant and only in
the case where all tasks execute for their worst-case time
[3].

Consider the timing requirements presented in Figure 1.
Figure 1 illustrates a task set consisting of three tasks (A, B
and C), and a single transaction requirement across all the
tasks. The periods and deadlines of tasks A, B and C are
50, 100 and 50 respectively. The transaction has a period of
100 with a deadline of 75. Unless otherwise specified, all
the tasks are initially given a deadline equal to their period.

There are two phases to the calculation of the transac-
tion’s response time, which are: establishing the particular

Task A

D = 50

T = 50

Task B

D = 100

T = 100

Task C

D = 50

T = 50

transaction deadline = 75
transaction period = 100

Figure 1: Timing Requirements for a Transaction

release of each task in the transaction, and the completion
time for the releases of interest. This is carried out by start-
ing with the first task and working through the tasks in the
defined precedence order. Equation (1) can be used for cal-
culating the task instance that is relevant to the transaction.

nt =

�
(nt�1 � 1)Tt�1 +Rt�1 �Rt + Tt

Tt

�
(1)

where t is the tth task (assuming tasks are ordered
according to precedence), in the transaction,

nt is the instance of the tth task, where nt 2 N
n1 is 1, and
Rt is the worst-case response time of task t.

The worst-case response time of task t,Rnt

t , of the trans-
action’s critical instant (i.e. time zero) is given in equation
(2). When calculating transactions’ response times, an as-
sumption is made that the worst-case response time of a task
is equal to the task’s deadline. A proof of equations (1) and
(2) is contained in [3].

Rnt

t = (nt � 1)Tt +Rt (2)

where Rnt

t is the worst-case response time of the ntht
instance of task t.

Using an initial value of n1 = 1, the response time of
each task in the transaction can be calculated by starting
with the first task and taking each task in turn. Consider the
example in Figure 1,

n1 = 1 (3)

R1

1
= R1 = 50 (4)

n2 =

�
R1 �R2 + T2

T2

�
= 1 (5)

R1

2
= 100 (6)

n3 =

�
R1

2
�R3 + T3

T3

�
= 3 (7)

R2

3
= 150 (8)

) The worst-case response time for the transaction is 150.
Analysis for verifying transactions can be developed us-

ing this approach. However, preference would be given to a
scheduling technique that eliminates the need for bespoke
analysis other than task schedulability analysis. The ap-
proach to meeting the timing requirements (and providing



evidence that they are met) is illustrated in Figure 2. There
are basically two parts to this approach; the first involves de-
riving the task attributes (without knowledge of the tasks’
worst-case execution times), and the second then uses the
tasks’ worst-case execution times to verify that the timing
requirements are met. This paper provides the first part of
the approach (i.e. the task attribute assignment), the second
part (i.e. the schedulability analysis) is covered in [3] as
well as numerous other papers.

Calculation of 

Task AttributesRequirements

Timing Task Schedulability

Analysis

Schedulability

Analysis Results

Worst-Case Execution Times
Tasks’

Attributes

Figure 2: Diagram to Illustrate the Approach to Meeting the
Timing Requirements

4 Meeting Transaction Deadlines in Unipro-
cessor Systems

The basic requirement for a transaction is that a sequence
of tasks are executed in a specific order within a fixed
amount of time. To achieve this requirement, the attributes
that can be controlled are period, offset, deadline and prior-
ity. The attributes to be controlled can be further simplified
by assigning priorities from deadlines using the DMPO.

The proposal is that the necessary timing requirements
can be handled by just setting deadlines and offsets to ap-
propriate values. The system timing requirements are then
verified by simply proving the task’s offsets are enforced in
the scheduler and using schedulability analysis to show the
task’s deadlines are met.

The approach to meeting the transaction requirements is
based on reducing the task deadlines in a systematic man-
ner so that the task deadlines are reduced by the minimum
possible. The technique is presented through a number of
examples building up towards a general-purpose algorithm.
An assumption is made that the sum of the worst-case exe-
cution times of the tasks is less than or equal to the transac-
tion’s deadline.

To demonstrate these approaches work, time-lines are
produced as shown in Figure 3. The purpose of the time-
lines is to illustrate the worst-case response times for tasks
and transactions. The time-line depicts the worst-case sit-
uation for both tasks and transactions, which is a critical
instant for the tasks and the tasks’ response times are equal
to their deadlines. The time-lines present the tasks’ execu-
tion from the release of the first task of the transaction. The
time-lines present enough instances of each task until the re-
quired precedence ordering has been achieved. In the case
of the transaction requirement in Figure 1, Figure 3 shows
task A executing followed by task B followed by task C.
It is not deemed necessary to present instances of each task

after the instance corresponding to the transaction, e.g. only
one release of task A is shown.

Task C

Task B

Task A

T = 100

end-to-end response time = 150

T= 50

Instance 1

Instance 1 Instance 2 Instance 3

Instance 1

T = 150

Figure 3: A Time-Line for the Transaction Illustrated in
Figure 1

When producing the time-lines, which is effectively the
same as analysing whether the transaction requirements are
met, the following steps are taken:

1. Assume the first task in the transaction completes at its
worst-case time, i.e. at its deadline.

2. Find the appropriate instance of the next (in terms of
precedence) task in the transaction. An appropriate in-
stance is one where the response time of the task is
greater than the preceding task of the transaction.

Rule: If a task has a lower priority than the preceding
task and an identical (or later) release time, then the
current release can be considered. Otherwise, the next
release must be considered.

3. Assume the task completes at its worst-case time, i.e.
at its deadline.

4. If the task is not the last of the transaction then return
to step 2.

5. Test whether the response time of the transaction meets
its deadline.

4.1 Task Attribute Assignment When the Trans-
action Deadline � Transaction Period

The purpose of this section is to propose a strategy for as-
signing task attributes so that transaction requirements are
met in the simplest of cases that is when the transactions’
deadlines are less than or equal to their periods. The at-
tribute to be controlled is the tasks’ deadlines.

An important consideration when trying to meet the
transaction’s deadline is the relationship between tasks’
deadlines. Consider two tasks t-1 and t, task t is always
released at the same time as task t-1 and the tasks have dead-
lines such that Dt�1 < Dt. Under these conditions, task t
always follows task t-1, i.e. nt = nt�1 based on equation



(1). It is proven in [3] that these deadlines enforce the prece-
dence relationship and that the transaction’s response time
is less than Di - assuming the tasks meet their deadlines.
The advantage of the deadlines conforming to this relation-
ship is that the worst-case response time of each task in the
transaction is kept to a minimum because the tasks are log-
ically phased. Considering equation (2), the response time
of the transaction is minimised if the value of ni (where
i 2 Tasks in the Transaction) is kept as small as possible.
Therefore, the transaction deadline is more likely to be met.
In addition, by dealing with deadlines in this way it is easier
to justify the precedence ordering is met.

To demonstrate the approach to task attribute assign-
ment, consider the timing requirement illustrated in Figure
1. The time-line in Figure 3 indicates the worst-case end-
to-end response time for the task characteristics in Figure 1
is 150, which is outside our allowed band.

Tasks’ deadlines are assigned starting with the last task
in the transaction and working backwards towards the first
task. By reducing the deadline of tasks A and B to 50-2�
(where� = 1 clock cycle) and 50-� respectively, the worst-
case response time of the transaction becomes 50 and the
requirement is met. The time-line in Figure 4 demonstrates
the requirement is met.

An important constraint is that deadlines can only ever be
decreased because increasing the deadline could affect the
ability to meet other requirements. Therefore, if the original
deadline of task A was less than 50 � 2�, then task A’s
deadline would not be increased to 50� 2�. However, the
transaction would still be met.

Task C

Task B

Task A

T= 50

∆

∆

Instance 1

Instance 1

Instance 1

end-to-end response time = 50

Figure 4: A Time-Line for the Transaction in Figure 1

It has been argued in [3] that the task assignment algo-
rithm presented in this section is optimal in the case where
the transaction deadline is less than the transaction period.
However in our experience, the computational model con-
sidered in this section is too restrictive because a transac-
tion’s deadlines is often greater than their period. The fol-

lowing section is to relax this restriction.

4.2 Task Attribute Assignment For Arbitrary
Transaction Deadlines

The aim of this section is to develop an approach to task
attribute assignment for cases where transaction deadlines
have an arbitrary value. Again, the aim is to use deadline
assignment instead of priority assignment to avoid the need
to separately analyse whether transaction requirements are
met.

A transaction deadline could be dealt with using the ap-
proach in section 4.1. However, the ability to schedule the
task set may be unnecessarily reduced by making the dead-
lines less than needed. The reason is the transaction dead-
line would be constrained so it has to be less than or equal
to its period. A potential solution to this problem is to in-
crease the deadline of the last task in the transaction to the
value of the deadline of the transaction. Then, the task dead-
lines would be assigned so that precedence is achieved as
described in section 4.1. The transaction’s deadlines would
then be verified using the schedulability analysis for arbi-
trary deadlines discussed in [4]. There are two problems
with adopting this approach, which are; this form of tim-
ing analysis is pessimistic [5], and the tasks may have other
constraints, e.g. other transactions, preventing the deadlines
being increased. Therefore, a more appropriate approach is
sought.

A characteristic of the requirements is a task’s period
could be longer than the period of the task that follows it
in the transaction. In this case, it may not be necessary or
possible to reduce all the deadlines so that perfect prece-
dence between the tasks of the transaction is maintained.
For example, consider the timing requirements in Figure 5.
The requirements of the transaction are an iteration rate of
100 and an end-to-end deadline of 150. The periods of tasks
A, B, C and D are 50, 100, 100 and 50 respectively. In this
case, task B cannot always follow task A because task B has
a slower update rate.

Figure 6 shows that without altering tasks’ deadlines, the
requirement is not met because the transaction’s response
time is 250. By the previous approach, in section 4.1, the
transaction requirements could be met as shown in Figure
7. The task attributes illustrated in Figure 7 are sub-optimal
because the timing requirements could be met with larger
deadlines as shown in Figure 8. Having larger deadlines
means the tasks have a lower priority. The benefit of this
is that the impact of the change in deadlines on the rest of
the system is minimised and the tasks are more likely to be
schedulable.

The task attributes of Figure 7 can be generated using
Algorithm 1. The algorithm does not simply rely on the
tasks’ deadlines being reduced so that perfect precedence
is maintained. Instead, while the transaction requirement
is not met, the highest deadline is reduced by �, and if



D = 50

T = 50

Task A

transaction deadline = 150

Task B

D = 100

T = 100

Task C

D = 100

T = 100

Task D

T = 50

D = 50

transaction period = 100

Figure 5: Timing Requirements for a Transaction

T = 100T= 50

Instance 1

Instance 1

Instance 1 Instance 2 Instance 3

Task B

Task C

Task A Instance 1

Task D

T = 150

Instance 2

Instance 4 Instance 5

T = 200

end-to-end response time = 250

T = 250

Figure 6: A Time Line for the Transaction in Figure 5

T= 50

end-to-end response time = 50

∆

Task D

Task C

∆
Task A

Instance 1

∆Task B

Instance 1

Instance 1

Instance 1

Figure 7: A Time Line for the Transaction in Figure 5

T = 100

end-to-end response time = 150

T= 50

∆Instance 1

Instance 1

Instance 1 Instance 2 Instance 3

Task B

Task C

Task A Instance 1

Task D

T = 150

Figure 8: A Time Line For the Transaction in Figure 5

this causes any of the preceding sequence of tasks in the
transaction to have the same deadline, then its deadline is
also reduced by �. In the case of the task set in Figure 5,
tasks B and C have their deadlines repeatedly reduced until
the transaction’s deadline requirement is met. The bene-
fit of the approach in Algorithm 1 is that if the deadlines

are larger, then there is a greater chance of a schedulable
solution. The algorithm also contains a manipulation of
the TDAC - Task Deadlines Are Changing (that indicates
whether the task deadlines have changed) flag. The use of
this flag becomes apparent later in the paper.

Algorithm 1 - Algorithm for the Generalised Approach

for each task in the transaction
if the following task has an equivalent deadline then
reduce the task’s deadline by �
assign the value of false to the TDAC flag

while the transaction deadline is not met
assign the value of true to the TDAC flag
take the longest deadline and reduce it by �
for each task in the transaction
if the following task has an equivalent deadline then
reduce the task’s deadline by �
assign the value of false to the TDAC flag

4.3 Optimality of the Approach

With any approach it is important to ascertain whether it
is optimal. If it is not optimal, then any deficiencies should
be highlighted so that appropriate action can be taken where
necessary. First impressions suggest that the approach may
be optimal because the deadlines of the tasks are the maxi-
mum possible whilst still meeting the timing requirements.
However, trying to prove optimality is difficult because of
the effect of complex interactions with other tasks and trans-
actions.

D = 50

T = 50

Task A

transaction deadline = 145

Task B

D = 100

T = 100

Task C

D = 100

T = 100

Task D

T = 50

D = 50

transaction period = 100

Figure 9: Timing Requirements For a Transaction

Consider the transaction requirement in Figure 9. Figure
10 presents the solution derived using the approach in Algo-
rithm 1, whereas Figure 11 presents an alternative solution.
It is impossible to judge which of these is the better solution
without knowledge of all the tasks’ execution times, prior-
ities and deadlines. On the one hand, the task attributes in
Figure 10 cause more interference through tasks B and C.
While in Figure 11, tasks B and C cause less interference
but task D causes more. Therefore, it can be stated that the
approach in Algorithm 1 is not optimal.

In our experience using the task attribute assignment ap-
proach, no specific examples have been found where the
issue raised in this section has caused problems. A case
study on a real system is presented in [3] along with a dis-
cussion of what the designer could do if problems were en-
countered.



T= 50

Task B

Task C

Task A

Task D

3∆

2∆

∆

Instance 1

Instance 1

Instance 1

Instance 1

end-to-end response time = 50

Figure 10: A Time Line for the Transaction in Figure 9

T = 100

end-to-end response time = 145

T= 50

δInstance 1

Instance 1

Instance 1 Instance 2 Instance 3

Task B

Task C

Task A Instance 1

Task D 5 5 5

T = 150

Figure 11: A Time Line for the Transaction in Figure 9

5 Jitter
The purpose of this section is to explore how jitter re-

quirements can be handled by the manipulation of task at-
tributes. An important constraint, and a frequent criticism
of fixed priority scheduling is related to the control of jitter.
A conventional model of fixed priority scheduling is said to
suffer worse jitter than a cyclic scheduler [6].

A prime driver for this work is to control jitter (where
it matters) and enable the schedulability analysis for tasks
to also verify the jitter requirements. Therefore for similar
reasons to those given in section 4.1, the jitter requirement
should be handled using deadlines rather than priorities. If
a task has a deadline equal to the jitter requirement, then
the requirement is met because the window of allowed ex-
ecution is constrained between the critical instant and the
time allowed for the jitter requirement. Using this approach
would be pessimistic since there is a minimum processing
time for each task that adds no variability, i.e. the best case
response time. Therefore, the deadline can be calculated
using equation (9).

Di = Ji +BCRTi (9)

where BCRTi is the best case response time of task i.

The best case response times of tasks can be generated
in two stages. Initially, the value can be set to zero, this
makes the task set harder to schedule since the deadlines are
lower. Later, the value can be evolved as more results from
analysis become available. The best case response times can
be taken as the best case execution time or calculated using
either exact analysis techniques, or the method proposed by
Harbour, Garcia and Guiterrez [7].

Clearly it can be seen that having a deadline as defined in
equation (9) constrains the variation of the task’s computa-
tion time so that the jitter requirement is met. The fact that
the choice of deadline controls the jitter means that the stan-
dard schedulability test also verifies the jitter requirement is
met removing the need for extra analysis. However, there
are problems with the approach based on equation (9). Two
cases are illustrated.

Case 1
If many tasks have jitter requirements, then there may be

an abnormally large number of tasks with short deadlines.
Short deadlines means the tasks have to execute shortly after
the critical instant, which could easily lead to an unschedu-
lable solution.

Solution for Case 1
Phase the execution of tasks by spreading the execution

using offsets. However, the use of offsets to phase execu-
tion should be avoided, where possible, due to the increased
maintenance problems of having “slots”. The maintenance
problems of slots would be analogous to the problems of
cyclic scheduling. �

Case 2
Another area of concern is related to transactions. A jit-

ter requirement placed on the last task in the transaction
would lead to all the preceding tasks having a shorter dead-
line, which could affect schedulability. For example, con-
sider the task set illustrated in Figure 12, which represents
a transaction requirement that includes a jitter requirement
on the last task.

Using equation (9) to calculate the jitter requirement of
task C results in a deadline of 6. Then applying the tech-
nique in Algorithm 1 leads to tasks A and B having a dead-
line of 6� 2� and 6��. The time-line in Figure 13 illus-
trates the execution of the tasks. The shaded area represents
the allowed variation in task C’s execution and the other
time (1 unit) is the non-variant (equal to task C’s best case
response time) part of its execution. The problem with the
solution in Figure 13 is that all the tasks have to execute
within a tight deadline.

Solution for Case 2
The solution to the problem is again the use of offsets.

It is proposed that the solution demonstrated in Figure 14
is often better than the solution demonstrated in Figure 13.
The basis of the solution is to constrain the variation in task
C’s execution at the end of the allowed execution time of



Task A

D = 50

T = 50

Task B

D = 50

T = 50

Task C

D = 50

T = 50
J = 5, BCRT=1

transaction deadline = 50
transaction period = 50

Figure 12: Timing Requirements For A Transaction

Task C

Task B

Task A

T=6

∆

∆

Instance 1

Instance 1

Instance 1

T=1

end-to-end response time = 6

Figure 13: Time-line For the Transaction in Figure 12

the transaction by using an appropriate offset. The offset is
calculated as shown in equation (10). The allowed execu-
tion time for task C is equal to the deadline calculated using
equation (9). Precedence of the other tasks is enforced by
making the other tasks execute before task C is released.
Therefore, task B is given a deadline equal to the offset of
task C and then Algorithm 1 is applied to the tasks preced-
ing task C. The approach for choosing task B’s deadline and
task C’s offset can be represented by Algorithm 2. �

OC = transaction deadline� execution window of task C

OC = transaction deadline� (JC +BCRTC) (10)

Task C

Task B

Task A

T=44

∆

∆

Instance 1

Instance 1

Instance 1

T= 50

end-to-end response time = 50

Figure 14: Time Line for the Transaction in Figure 12

It should be noted that if the transaction deadline is
greater than its period, then the problem in Case 2 does not
arise because Algorithm 1 does not unnecessarily enforce
precedence in this case. Instead, the longest deadline is re-
duced until the requirements are met. Therefore, reducing

task C’s deadline to meet its jitter requirement does not nec-
essarily lead to tasks A and B’s deadlines being reduced to
enforce the precedence.

Algorithm 2 - Algorithm for Dealing With Jitter

for each task (denoted i) in the system
if task i has a jitter requirement then
if task i is not the last task in the particular transaction then
Di = Ji +BCRTi

else
if the transaction deadline > transaction period then
Di = Ji +BCRTi

else
if Di > transaction deadline then
task deadline = transaction deadline
Oi = Di � (Ji +BCRTi)
for all preceding tasks (denoted j) in the transaction
if transaction deadline is not met then
if Dj > transaction deadline - (Ji +BCRTi) then
Dj = transaction deadline - (Ji +BCRTi)

The approach defined in Algorithm 2 cannot be de-
scribed as optimal. If a large number of tasks (specifically
ones that are not part of the particular transaction) are al-
ready phased to execute during the time interval [Oi; Di],
then the approach may lead to an unschedulable solution.
In this circumstance an approach based entirely on equa-
tion (9) and Algorithm 1 may increase the likelihood of a
schedulable solution. However, in practice this is unlikely
to be the case. There is no optimal approach published for
dealing with jitter.

6 Separation
The purpose of this section is to present a technique for

assigning task attributes so that separation requirements are
handled. For two tasks with a separation requirement (Si)
between them, the requirement can be satisfied by manipu-
lating the offsets and deadlines of the two tasks. The tech-
nique gives the second of the two tasks an offset Si from
the deadline of the earlier task. This is expressed in equa-
tion (11).

Oi = Si +Di�1 (11)

where Si is the separation requirement between two tasks,
task i-1 precedes task i, and
Di�1 is the deadline of task i-1.

If the resultant offset is too great (i.e. Oi + Ci > Di),
then task i does not have a chance to meet its deadline. In
this case, an appropriate metric for altering the deadline of
the first task is required. An approach is presented in equa-
tion (12). The approach basically splits the available execu-
tion time between the two tasks. This is achieved by making
the relative deadline (equal to the task’s deadline minus its
offset) of the preceding task equal to the relative deadline



of the current task. The condition in equation (11) still has
to be satisfied. The approach developed is represented in
Algorithm 3. However, it should be noted that manual in-
tervention may still be deemed necessary, dependence on
the characteristics of the system.

Di�1 =
Di � Si �Oi�1

2
(12)

Algorithm 3 - Algorithm that Accounts for Separation

for each task in the system
if a task (i) is to be separated from a task (i-1) then
Oi = Si + Di�1

if (Oi + Ci) > Di then
Di�1 =

Di�Si�Oi�1

2

assign the value of true to the TDAC flag

7 Overall Task Attribute Assignment
Combining the various techniques discussed in this pa-

per results in Algorithm 4. The overall method for prior-
ity assignment is not considered to be optimal because of
some particularly obscure events that are discussed in this
paper. For example, the case in section 4.3. However, use
has shown that the approach is sufficient for the typical sys-
tem timing requirements encountered.

Algorithm 4 - Algorithm for Priority Assignment

initialise TDAC flag to true
apply algorithm 2
while the TDAC flag is true

assign the value of false to the TDAC flag
for each transaction in the set of transactions

apply algorithm 1
apply algorithm 3

apply priorities to the tasks by DMPO
perform schedulability analysis of the task set

The only real problem encountered so far when using
this approach has been caused by impractical requirements
related to circular arguments. For instance consider the fol-
lowing two requirements, one requirement is task A has to
precede task B and the other requirement is task B has to
precede task A. Both requirements can not be resolved by
Algorithm 1. In this case the Algorithm 1 would never
obtain a result, with the deadlines tending towards �1.
Clearly, there is no practical solution to this requirement,
therefore it can be stated the requirement should not be al-
lowed to exist. When implementing the algorithm, circu-
larities should be recognised and flagged to the user so that
appropriate manual intervention can take place.

8 Conclusions
This paper has addressed how attributes can be assigned

to tasks that represent the system’s timing requirements as
priorities, offsets and deadlines. The three primary benefits
of this work are:

1. the schedulability analysis assumes a critical instant
verifies all the system’s timing requirements,

2. the approach is easy to understand, and

3. the approach removes the need for complex mecha-
nisms such as priority inheritance.

The approach derived has the significant advantage that
the problems are dealt with off-line. This makes the imple-
mentation easier to produce and maintain, and it is easier
to verify the precedence constraints are achieved. In most
cases the approach is sufficient, except for a few obscure
cases. An additional advantage is that our approach can be
explained relatively straightforwardly to engineers and reg-
ulators, which helps the technology transfer process. Re-
lated to technology transfer, Rolls-Royce have successfully
applied the technique to complex electronic engine con-
trollers. The technique is subject to a pending patent [8].

References

[1] R. Gerber, S. Hong, and M. Sabsena, “Guaranteeing
end-to-end timing constraints by calibrating interme-
diate processes,” IEEE Real-Time Systems Symposium,
1994.

[2] R. Yerraballi, Scalability in Real-Time Systems. PhD
thesis, Computer Science Department, Old Dominion
University, August 1996.

[3] I. Bate, Scheduling and Timing Analysis for Safety-
Critical Systems. PhD thesis, Department of Computer
Science, University of York, November 1998.

[4] K. Tindell, Holistic Scheduling Analysis for Distributed
Hard Real-Time Systems. No. YCS 197, Department of
Computer Science, University of York, 1993.

[5] J. Gutierrez, J. Garcia, and M. Harbour, “On the
schedulability analysis for distributed real-time sys-
tems,” in 9th Euromicro Workshop on Real-Time Sys-
tems, pp. 136–143, 1997.

[6] C. Locke, “Software architecture for hard real-time ap-
plications: cyclic executives vs. fixed priority execu-
tives,” Real-Time Systems, vol. 4, pp. 37–53, March
1992. Real-Time Syst. (Netherlands).

[7] J. Gutierrez, J. Garcia, and M. Harbour, “Best-case
analysis for improving the worst-case schedulability
test for distributed hard real-time systems,” in 10th Eu-
romicro Workshop on Real-Time Systems, pp. 35–44,
1998.

[8] I. Bate and A. Burns, “Flexible scheduling for en-
gine controllers,” Tech. Rep. UK Patent Application
Number 9710522.5 and US Patent Application Number
5,606,695, The Patent Office, May 1997.


