
Design and Evaluation of a Feedback Control EDF Scheduling
Algorithm*

* Supported in part by NSF grant CCR-9901706 and contract IJRP-
9803-6 from the Ministry of Information and Communication of
Korea.

Chenyang Lu John A. Stankovic Gang Tao† Sang H. Son

Department of Computer Science, †Department of Electrical Engineering
University of Virginia, Charlottesville, VA22903

e-mail: {cl7v, stankovic, son}@cs.virginia.edu, †gt9s@virginia.edu

Abstract

Despite the significant body of results in real-time
scheduling, many real world problems are not easily
supported. While algorithms such as Earliest Deadline
First, Rate Monotonic, and the Spring scheduling algorithm
can support sophisticated task set characteristics (such as
deadlines, precedence constraints, shared resources, jitter,
etc.), they are all "open loop" scheduling algorithms. Open
loop refers to the fact that once schedules are created they
are not "adjusted" based on continuous feedback. While
open-loop scheduling algorithms can perform well in static
or dynamic systems in which the workloads can be
accurately modeled, they can perform poorly in
unpredictable dynamic systems. In this paper, we present a
feedback control real-time scheduling algorithm and its
evaluation. Performance results demonstrate the
effectiveness of the algorithm when execution times vary
from the worst case and when there are major shifts of total
load in the system. A key part of this feedback solution is its
explicit use of deadline based metrics.

1. Motivation and Introduction
Real-time scheduling algorithms fall into two categories:
static and dynamic scheduling. In static scheduling, the
scheduling algorithm has complete knowledge of the task
set and its constraints, such as deadlines, computation
times, precedence constraints, and future release times. The
Rate Monotonic (RM) algorithm and its extensions
[Liu73][Leho89] are static scheduling algorithms and
represent one major paradigm for real-time scheduling. In
dynamic scheduling, however, the scheduling algorithm
does not have the complete knowledge of the task set or its
timing constraints. For example, new task activations, not
known to the algorithm when it is scheduling the current
task set, may arrive at a future unknown time. Dynamic

scheduling can be further divided into two categories:
scheduling algorithms that work in resource sufficient
environments and those that work in resource insufficient
environments. Resource sufficient environments are
systems where the system resources are sufficient to a
priori guarantee that, even though tasks arrive dynamically,
at any given time all the tasks are schedulable. Under
certain conditions, Earliest Deadline First (EDF) [Liu73] is
an optimal dynamic scheduling algorithm in resource
sufficient environments. EDF is a second major paradigm
for real-time scheduling [Stan98]. While real-time system
designers try to design the system with sufficient resources,
because of cost and highly unpredictable environments, it is
sometimes impossible to guarantee that the system
resources are sufficient. In this case, EDF’s performance
degrades rapidly in overload situations. The Spring
scheduling algorithm [Rama84][Zhao87] can dynamically
guarantee incoming tasks via on-line admission control and
planning and thus is applicable in resource insufficient
environments. Many other algorithms (e.g., RED algorithm
[Butt95]) have also been developed to operate in this way.
This planning-based set of algorithms represents the third
major paradigm for real-time scheduling. However, despite
the significant body of results in these three paradigms of
real-time scheduling, many real world problems are not
easily supported. While algorithms such as EDF, RM and
the Spring scheduling algorithm can support sophisticated
task set characteristics (such as deadlines, precedence
constraints, shared resources, jitter, etc.), they are all "open
loop" scheduling algorithms. Open loop refers to the fact
that once schedules are created they are not "adjusted"
based on continuous feedback. While open-loop scheduling
algorithms can perform well in static or dynamic systems in
which the workloads (i.e., task sets) can be accurately
modeled, they can perform poorly in unpredictable
dynamic systems, i.e., systems whose workloads cannot be
accurately modeled. For example, the Spring scheduling
algorithm assumes complete knowledge of the task set

except for their future release times. Systems with open-
loop schedulers such as the Spring scheduling algorithm are
usually designed based on worst-case workload parameters.
When accurate system workload models are not available,
such an approach can result in a highly underutilized
system based on extremely pessimistic estimation of
workload.

Unfortunately, many real-world complex problems
such as agile manufacturing, robotics, adaptive fault
tolerance, and C4I and other defense applications are not
predictable. Because of this, it is impossible to meet every
task deadline. The objective of the system is to meet as
many deadlines as possible1. For example, autonomous
robotic systems always suffer from sudden variations in
computational load and overload situations due to highly
variable execution times in robot control algorithms (e.g.,
sensor interpretation, motion planning, inverse kinematics
and inverse dynamics algorithms) [Becc99]. For another
example, in information and decision support systems,
accurate knowledge about transaction resource and data
requirements is usually not known a priori. The execution
time and resource requirements of a transaction may be
dependent on user input or dependent on sensor values. For
these applications, a design based on the estimation of
worst case execution times will result in extremely
expensive and underutilized system. It is more cost
effective to design for less than worst case, but sometimes
miss deadlines.

Another important issue is that these scheduling
paradigms all assume that timing requirements are known
and fixed. The assumption is that control engineers design
the system front-end control loops and generate resulting
timing requirements for tasks. The scheduling algorithms
then work with this fixed set of timing requirements. Real
control systems, in general, are much more flexible and
robust, e.g., instead of choosing a single deadline for a task
which is passed on to the scheduling system, a deadline
range might be acceptable to the physical system. If this
range was passed to the scheduling system, the on-line
scheduling might be more robust.

We believe that due to all these problems, solutions
based on a new paradigm of scheduling, which we call
feedback control real-time scheduling, is necessary for
some important systems. A case for this was made in
[Stan99]. In this current paper we fully develop a feedback
control scheduling algorithm, discuss stability, and present
the evaluation of the algorithm.

In the past, many forms of feedback control have
appeared in real-time and non-real-time scheduling
systems, but it has not been elevated to a central principle;
rather most of the time it is used more as an afterthought
and is usually ad hoc. Most of these techniques also did not
address the key performance metric of real-time systems -

1 If such systems have some critical tasks, they are treated
separately by static allocation of resources.

the deadline miss ratios. More discussion of this appears
later in the related work section.

2. Approach
The mapping of control theory methodology and analysis to
scheduling provides a systematic and scientific method for
designing scheduling algorithms. Many aspects of this
mapping are straightforward, but others require significant
insight and future research. We now describe how such a
mapping can be done and what research is necessary. In
section 3 we present an instance of this mapping by creating
an actual algorithm and a runtime scheduling structure.

2.1. Control theory and real-time scheduling
A typical feedback control system is composed of a
controller, a plant to be controlled, actuators, and sensors
(as illustrated in Figure 1). It defines a controlled variable,
the quantity of the output that is measured and controlled.
The set point represents the correct value of the controlled
variable. The difference between the current value of the
controlled variable and the set point is the error. The
manipulated variable is the quantity that is varied by the
controller so as to affect the value of the controlled
variable. The system is composed of a feedback loop as
follows. (1) The system periodically monitors and compares
the controlled variable to the set point to determine the
error. (2) The controller computes the required control with
the control function of the system based on the error. (3)
The actuators change the value of the manipulated variable
to control the system. In the context of real-time scheduling
problems, our approach is to regard a scheduling system as
a feedback control system, and the scheduler as the
controller. The scheduler utilizes feedback control
techniques to achieve satisfactory system performance in
spite of unpredictable system dynamics. We believe that the
long term potential for a theory and practice of feedback
control scheduling is significant; partly because we can also
build upon the vast amount of knowledge and experience
from control systems.

As a starting point, we will apply PID (Proportional-
Integral-Derivative) control in schedulers. A basic form
PID control formula is

Controller Actuators
Plant

Sensors
feedbackSystem

Set point

Figure 1 Architecture of Feedback Control Systems

)1(
)(

)()()(
dt

tdError
CdttErrorCtErrorCtControl DtIP ++= �

We choose PID control as the basic feedback control
techniques in feedback control scheduling for the following
reasons. (1) In term of control theory, the scheduling
system is a dynamic system, i.e., a system whose output
depends not only on the current input, but also on the
previous system inputs. It is known that the current miss
ratio of a scheduling system depends not only on the
currently submitted task, but also on the previously
submitted tasks that remain in the system for queuing,
execution and blocking. It is known that PID control is a
widely applicable control technique in dynamic systems. (2)
Compared with other control techniques, an important
feature of PID control is that it does not require a precise
analytical model of the system being controlled. Instead, a
PID controller designed based on an approximate model
can achieve satisfactory performance. Due to the extremely
complex behavior of current computer systems, it is
impossible to precisely model the dynamics of real world
scheduling systems. However, certain form of approximate
modeling of the scheduling system can be built to help tune
the PID control parameters more systematically (such an
approximate model is presented in section 3.6 of this
paper). (3) According to control theory, basic PID control
can provide stable control in first and second order dynamic
systems. In systems with higher order of dynamics,
however, basic PID control can only provide approximate
control, but an adaptive form of PID control can provide
stable control for high order dynamic systems.

2.2. Feedback control real-time scheduling
To apply feedback control techniques in scheduling, we
need to restructure schedulers based on the feedback control
framework. We need to identify the controlled variable, the
manipulated variable, the set point, the error, the control
function, and the mechanisms of the actuators. We can then
set up the feedback loops based on these selections. The
choice of the controlled variable depends on the system
goal. For example, the performance of real-time systems
usually depends on how many tasks make (miss) their
deadlines. We define the system deadline miss ratio as the
percentage of tasks that miss their deadlines; this is a
natural choice of the controlled variable. The manipulated
variable must be able to affect the value of the controlled
variable. In the real-time scheduling, it is a widely known
fact that the deadline miss ratio highly depends on the
system load, i.e., the requested CPU utilization of tasks in
the system. Thus the requested CPU utilization can be used
as the manipulated variable. Other possible choices of
manipulated variables are the periods/deadlines of tasks in
control applications when there exists the flexibility to
adjust these task parameters [Seto96].

In summary, a feedback control scheduling system
would start with a schedule based on the nominal
assumptions of the incoming tasks (expected start time,
expected execution time and deadline). The system would

then monitor the actual performance of the schedule,
compare it to the system requirements and detect
differences. The system would call control functions to
assess the impact of these differences and apply a
correction to keep the system within an acceptable range of
performance. Research is needed to answer the following
open questions:
• What are the right choices of controlled variables,

manipulated variables, set points, and effective control
functions/mechanisms for feedback control scheduling?

• How to model a feedback control scheduling system?
• How to tune the control parameters to build a stable and

high performance scheduler?
• How to integrate the flexible timing constraints derived

from the front-end feedback control loops in control
systems with an on-line feedback control scheduling
algorithm?

• What is the impact of overhead in feedback control
scheduling and how to minimize it?

3. Feedback Control EDF
We now present an algorithm called Feedback Control EDF
(FC-EDF), which integrates PID control with an EDF
scheduler. With FC-EDF, we demonstrate how to structure
a real-time scheduler based on the feedback control
framework. We will identify specific research issues related
to feedback control scheduling using FC-EDF as a concrete
example. The FC-EDF architecture (shown in Figure 2) can
be generalized to be used as a framework of feedback
control schedulers. For example, we can investigate
feedback control RM by replacing the EDF scheduler in
Figure 2 with a RM scheduler.

3.1. Overview of FC-EDF
To apply PID control to a scheduling system, we need to
decide on the components of a scheduling system
corresponding to those in a feedback control system (Figure
1). First, we need to choose the controlled variable and the
set point of the system. The requirements of an ideal soft
real-time scheduling algorithm should be to (1) provide
(soft) performance guarantees to admitted tasks, i.e.,
maintain low miss ratio among admitted tasks; and (2)
achieve high system throughput and utilization. To satisfy
these requirements, FC-EDF chooses miss ratio among the
admitted tasks, MissRatio(t), as the controlled variable and
an (application dependent) small but non-zero value (e.g.,
MissRatios = 1%) as the set point. Note that 0 is not chosen
as the set point for the following reasons. A system with a
set point of MissRatios = 0 can ignore the second
requirement of soft real-time scheduling, i.e., high
utilization and throughput. When a system achieves a 0%
deadline miss ratio but causes extremely low utilization
(e.g., by unnecessarily rejecting too many tasks), a feedback
control scheduler with MissRatios = 0 will treat it as the
correct state. In contrast, a feedback control scheduler with

a set point of MissRatios ≠ 0 will always try to (lightly)
overload the system to achieve high utilization. Note that in
an unpredictable environment, it is impossible for a system
to achieve 100% utilization and 0% miss ratio all the time
and a tradeoff between miss ratio and utilization is
unavoidable. There can be two approaches to deal with this
tradeoff. The approach of admission control based on
pessimistic estimation is the pessimistic approach, which
always avoids deadline misses at the cost of low utilization
and throughput. This approach has been widely used in hard
real-time systems. On the other hand, the feedback control
scheduling presented in this paper represents the optimistic
approach, which maintains a low (but possibly non-zero)
miss ratio and high utilization and throughput. When a high
misses actually happens due to system load changes, the
scheduler corrects the system state back to the satisfactory
state, i.e., a state with low miss ratio and high utilization
and throughput. This optimistic approach is especially
preferable in soft real-time systems since it provides a soft
performance guarantee in term of miss ratios while
achieving high utilization and throughput at the same time
(see performance evaluation in section 4).

Second, we choose the requested CPU utilization, i.e.,
the total CPU utilization requested by all the accepted tasks
in the system, as the manipulated variable. The rational is
that EDF can guarantee a miss ratio of 0% given the system
is not overloaded, and in normal situations, the deadline
miss ratios increases as the system load increases2. For
simplicity of description, we will use requested utilization
in place of requested CPU utilization in this paper. Third,
we need to design the mechanisms (i.e., actuators) used by
the scheduler to manipulate the requested utilization. An
Admission Controller and a Service Level Controller are
included in the FC-EDF scheduler as the mechanisms to
manipulate the requested utilization. The Admission
Controller can control the flow of workload into the system,
and the Service Level Controller can adjust the workload
inside the system.

The FC-EDF scheduler is composed of a PID
controller, a Service Level controller, an Admission
Controller and an EDF scheduler (Figure 2). The system
performance MissRatio(t) is periodically fed back to the
PID controller. Using the PID control formula (1), the PID
controller computes the required control action ∆CPU(t),
i.e., the total amount of CPU load that need to be added into
(when ∆CPU(t)>0) or reduced from (when ∆CPU(t)<0) the
system. Then the PID controller calls the Service-Level
Controller and the Admission Controller to change the CPU
load of the system by ∆CPU. This system control forms a
feedback control loop in the scheduling system. The EDF
scheduler schedules the accepted tasks according to the
EDF policy.

2 This is under the assumption that the domino effect is rare in real
world applications.

3.2. Task model
Our initial task model assumes that all tasks have soft
deadlines and all the tasks are independent. For the
convenience of description, this paper assumes a task model
similar to the imprecise computation model [Liu91], but the
scheduling algorithms presented do not depend on the
imprecise computation model. Each task Ti submitted to the
system is described with a tuple (I, ET, VAL, S, D). Each
task Ti has one or more logical versions I = (Ti1, Ti2, … Tik).
Note that when a task has multiple logical versions it does
not necessarily mean that it has multiple implementations.
An imprecise computation can have several different forms
including milestone method, sieve function method or
multiple version method [Liu91]. We call all these methods
that can tradeoff computation value and time as multiple
logical versions of a task for convenience of discussion.
Each version has different execution time and different
value. ET = {ETi1, ETi2, … ETik} (suppose ETi1≥ETi2≥ …
≥ETik) are the nominal execution times of different versions.
Here, nominal execution time instead of worst case
execution time is used in the system to achieve higher CPU
utilization in the system. The execution time is described in
the form of requested utilization. For example, ETi1=0.02
means the 1st version of task Ti requires 2% of the CPU
time. VAL = {VALi1, VALi2, … VALik} represents the
values of different implementation. In this research, different
versions of a task are called service levels. We call a version
with longer execution time and higher value a higher service
level than another version with less execution time and
lower value. Each task has a soft deadline Di and a start time
Si.

Note that FC-EDF does not depend on the imprecise
computation model. FC-EDF only needs a certain flexibility
to adjust the CPU utilization. In our future work, we will
extend the deadline Di to a range of deadlines (Di,min, Di,max).

PID Controller
Service Level

Controller

Admission
Controller

EDF
Scheduler

CPU

FC-EDF

Accepted Tasks

Submitted Tasks

MissRatios MissRatio(t)

∆CPUo

Completed Tasks

∆CPUi

Figure 2 Architecture of FC-EDF

The deadline of a task Ti could be adjusted dynamically
within the range. By adjusting the deadline of a task, the
Service Level Controller can effectively change the
requested CPU utilization in the system. This extension is
based on the fact that digital control systems are usually
robust, i.e., the task timing constraints are allowed to vary
within a certain range without affecting critical control
functions such as maintenance of system stability [Seto96].
Such extension is also applicable in multimedia systems, in
which the QoS specifications of a multimedia application
can be specified as intervals.

3.3. PID controller
The PID controller is the core of FC-EDF. It maps the miss
ratio of accepted tasks (i.e., error) to the change in
requested utilization (i.e., control signal) so as to drive the
miss ratio back to the set point.

The PID controller periodically monitors the controlled
variable MissRatio(t), and computes the control ∆CPU(t) in
terms of requested utilization with the following control
formula, which is an approximation of formula (1).

where error(t) = MissRatios – MissRatio(t). SP, CP, CI, CD,
IW and DW are tunable parameters of the PID controller.
SP is the sampling period. The PID controller will be called
every SP seconds. For convenience of presentation, we will
take SP as the time unit in our following discussion. CP, CI

and CD are the coefficients of the PID controller. IW is the
time window over which to sum the errors. Only errors in
the last IW time units will be considered in the integral
term. DW is the time window of derivative errors. Only the
error change during the last DW time units will be
considered in the derivative term (i.e., the derivative error is
(MissRatio(t-DW)-MissRatio(t))/DW). The tuning of these
parameters will be discussed in section 3.6. ∆CPU(t) is the
output (i.e., control signal) of the PID controller.
∆CPU(t)>0 means that the requested utilization should be
increased, and ∆CPU(t)<0 means that the requested
utilization should be decreased.

The PID controller will call the Service Level
Controller and the Admission controller to change the
requested utilization of the system by ∆CPU. If the current
requested utilization is CPU(t), the Service Level controller
and Admission Controller will change the requested
utilization to CPU(t)+∆CPU. The PID controller always
tries to change the requested utilization internally by calling
Service Level Controller first so that the system could
respond to the error faster. The admission controller is
called only if the Service Level Controller cannot
accommodate ∆CPU completely.

3.4. Service Level Controller
The Service Level Controller (SLC) changes the requested
utilization in the system by adjusting the service levels of
accepted tasks. For example, if it changes the service level
of task Ti from Tik to Tij, it adjusts the requested utilization
of the system by ETij-ETik, where ETij and ETik are the
estimated CPU requirement of Tik and Tij, respectively. SLC
returns the portion of ∆CPU not accommodated. This
portion of control will be accommodated by the Admission
Controller

3.5. Admission Controller
The Admission Controller (AC) controls the flow of
workload into the system. When a new task Ti is submitted
to the system, AC decides on whether it could be accepted
into the system. Given current system-wide requested
utilization CPU(t) and the CPU requirement of the
incoming task, the Admission Controller admits Ti with
service level k if k is the highest level that satisfies
CPU(t)+ETik<1; Ti is rejected if it cannot be admitted even
with the lowest level.

The Admission Controller’s parameter CPU(t) may be
adjusted when the PID controller cannot accommodate
∆CPU(t) completely with SLC. Suppose SLC changes the
requested utilization by ∆CPUi and ∆CPUi<∆CPU, AC will
accommodate ∆CPUo=∆CPU(t)-∆CPUi, the portion of
∆CPU not accommodated by SLC. It accommodates
∆CPUo by adjusting the estimation of requested utilization
CPU(t) as following est_cpu_util = 1 - ∆CPUo. The
Admission Controller will admit the workload of at most
∆CPUo (when ∆CPUo > 0) or will not admit any new tasks
until the system load has been reduced by amount of more
than |∆CPUo| (when ∆CPUo < 0).

3.6. Modeling and Analysis of feedback control
scheduling

3.6.1. Feedback control scheduling model
An important task of building a stable and high-
performance PID-control-based scheduler is to tune the
control parameters (i.e., CP, CI and CD). One way is to tune
the parameters by simulations. However, this approach
would require large amount of experiments to gain enough
confidence in the selected values of the parameters. A more
scientific and systematic approach is to apply control theory
analysis to select the PID control parameters. Such analysis
requires an analytical model of the scheduling system.
Before we present the model of a PID-control based
scheduling system, we define the following notions in the
discrete time domain:
1. SP is a constant sampling period, which is the time

elapsed in interval [k, k+1], k being time instants.
2. MissRatio(z): the miss ratio - the system output and the

controlled variable.

� ++=∆
IWIP terrorCterrorCtCPU)()()(

)2(
)()(

DW

DWterrorterror
C D

−−

3. MissRatios: the set point (i.e., the target) in term of miss
ratio.

4. CPU’(z): the estimated CPU utilization;
5. CPU(z): the CPU utilization;
6. ∆CPU’(z): the change in the estimated CPU utilization

(CPU’(z)) . This is the system input;
7. ug(k): the ratio of the actual total utilization to the

estimation;
8. mrg(k): the gain that maps the utilization (CPU(z)) to

the miss ratio (MissRatio(z)).
9. d(k): the disturbance (e.g., associated with the

utilization bound).

Using the above notations, the estimated CPU
utilization follows the following equation:

CPU’(z) = ∆CPU’(z)/(z-1) (3)

Since the precise execution time of each task is
unknown and changes over time, the actual requested
utilization is usually different from the estimated requested
utilization. In term of control theory, ug(k) is a time-variant
gain (called utilization gain in this paper) of the system. We
can get the (actual) CPU utilization using ug(k):

CPU(z) = ug(k)CPU’(z) (4)

We can derive the deadline miss ratio based on the
correlation between the deadline miss ratio and the system
utilization. The relationship between the deadline miss ratio
and the requested utilization can be modeled as

MissRatio(z) = mrg(k)CPU(z) – d(k) (5)

where mrg(k) (miss ratio gain) is a time-variant gain that
maps CPU(z) to MissRatio(z) in overload situations.

The transfer function of the PID controller is:

H(z) = CP + CI/(z-1) + CD(z-1)/z (6)

In summary, we present the block diagram of the FC-
EDF scheduling system in Figure 3.

3.6.2. Stability Analysis
For a control system, there are two forms of stability:
internal stability and BIBO stability. Internal stability is

related to the system behavior due to initial conditions. If no
input is applied, an internally stable system will settle to be
close to an equilibrium set point within a definite amount of
time. Although a real-time system could enter an internally
unstable mode when the miss ratio rises monotonically over
time (e.g., when deadlock occurs) even when there is no
change in the workload, this paper will assume an
independent task model and the system is assumed
internally stable when it is made BIBO stable. The issue of
internal stability will be investigated in our future research.
BIBO stability means that the system output is always
bounded for a bounded input. In the context of the
scheduling system, this means that the miss ratio will be
bounded for bounded changes in the workload. It is
important to tune the PID controller such that the BIBO
stability is satisfied to avoid uncontrollable performance
degradation in a scheduling system. For convenience of
description, we will use stability in place of BIBO stability
in this paper. To demonstrate the importance of using a
formal theory to describe feedback control real-time
scheduling, we present the following stability analysis result
(The mathematical proof is skipped due to the length limit
on this paper).

Theorem 1: When ug(k)mrg(k) is close to 1, the FC-EDF
scheduling system established by the block diagram in
Figure 3 is stable if one of the following conditions is
satisfied:
1. CI > 0, |CD| < 1, 2CP – CI + 4CD < 4, and

2 - 2CD
2 > CDCP + CP – CI > 0

2. CI = 0, |CD| < 1, and 0 < CP + 2CD <2

The assumption that ug(k)mrg(k) is close to 1 implies
that (1) the estimated utilization is not too far from the
actual utilization and (2) domino effect does not happen.
Under this assumption (which we believe is true for most
soft real-time systems), the stability condition gives the
guidance on how to set the coefficients in the PID control
such that the satisfactory scheduling performance can be
maintained. This is one important reason for basing
feedback control real-time scheduling on control theory.

Figure 3. Block diagram of the FC-EDF scheduling system

+

z

zC

z

C
C DI

P

)1(
1

−+
−

+
+

d(k)

-

mrg(k)∆CPU’ CPU’(z) MissRatio(z)
MissRatios

-
ug(k)

CPU(z)

1
1
−z

4. Experiments and Results

4.1. Simulation Model
An uniprocessor simulator of a soft real-time system was
used to study the performance of FC-EDF and baseline
algorithms. The workload consists of independent periodic
tasks. Each task instance has a deadline that equals its
period. If a task instance is not completed by its deadline, it
is immediately aborted. The simulator (Figure 4) has six
components: sources that generate tasks; an admission
controller that make admission/rejection decisions on
submitted tasks; an executor that models the execution of
the tasks; a monitor that periodically collects the
performance statistics of the system; a PID controller that
periodically computes control signals based on the
performance errors; and a service level controller that
adjusts the service levels of the tasks. A basic EDF
scheduler is embedded in the executor. The admission
controller, service level controller, and PID controller each
can be turned on/off to emulate the different baseline
scheduling algorithms.

4.2. Workload Model
Each source is characterized with a period (P) (the deadline
of each task instance equals its period), a set of worst case
execution times {WCETi}, a set of best case execution
times {BCETi}, a set of estimated execution times {EETi},
a set of average execution times {AETi} (WCETi ≥ AETi ≥
BCETi), and a set of values {VALi}, where #service_level-
1≥ i ≥ 0. Each tuple (P, WCETi, BCETi, EETi, AETi, VALi)
characterizes a service level and

EETi = (WCETi+BCETi)*0.5
AETi = EETi*etf

where etf (execution time factor) can be tuned to change the
accuracy of the estimation. The larger the etf is, the more
pessimistic the estimation is. For example, etf of 1.0 means
that the estimated execution time is equal to the actual
average execution time. The estimation is less than the
average execution time when etf < 1.0; and greater than the
average execution time when etf > 1.0. The actual
execution time of each instance (which is unknown to the
scheduler) is computed as a uniform random variable in
interval [AETi, WCETi] or [BCETi, AETi] depending on a
random Bernoulli trial with probability (AETi-
BCETi)/(WCETi-BCETi). In our experiments, the workload
is composed of 40 periodic tasks and each task has two
service levels. WCET0 = 2*WCET1, WCETi = 4*BCETi,
VAL0 = 1.0 and VAL1 = 0.5. It follows that etf lies in the
range of [0.4, 1.6]. A uniform distribution is used to
generate WCET0 and P of each task: WCET0 =
uniform(5,10), P = WCET0 *uniform(10,15). P is adjusted
such that 31 of the tasks are harmonious with least common
multiplier of 2400 time units. The same workload is used
for all the experiments. Each different experiment has
varied etf. All the tasks arrive in the beginning of each
experiment to overload the system. Each rejected task will
attempt to get re-admitted all through the experiment.

4.3. Implementation of FC-EDF
The parameter settings of FC-EDF in all the experiments
are listed in Table 1. The set point is the soft real-time
performance target miss ratio that the scheduler will
achieve. In practice, this value depends on the tolerance (to
deadline misses) of the application. The SP is equal to the
least common multiplier of the majority of the tasks such
that similar number of task instances are submitted in each
SP. IW controls the length of history that the controller
need to consider. DW affects the agility of the controller to
the sudden change in workload. CP, CI and CD are
coefficients of the PID controller. Note that the values of
CP, CI and CD are tuned so that they satisfy the stability
condition established in Theorem 1 to guarantee the
scheduling performance.

Set Point 0.01
SP 2400 (time unit)
IW 100 (SP)
DW 1 (SP)
CP 0.5
CI 0.05
CD 0.1
Table 1 FC-EDF parameter setting

4.4. Baseline Algorithms
The following baseline algorithms are implemented and
compared with FC-EDF in the experiments.

Source 1

Source 2

Source n

… …
Adm
Ctrl

Executor

Service Level
Ctrl

PID
Ctrl

Monitor

ready_q

reject_q

terminate_q
reject

accept finish
abort

performance
statistics

ctrl signalctrl signal

adjust level

Figure 4. Feedback Control Scheduling Simulator

MissRatio(t)

set point

• EDF: This is the basic EDF scheduling algorithm. It is
implemented by turning off the admission controller,
service level controller, and the PID controller.
• EDF+AC (EDF with static admission control):
EDF+AC is implemented by turning off the service level
controller and the PID controller. The admission decision is
made once for each periodic task when it is submitted.
• EDF+P (EDF with proportional control): EDF+P is
implemented and configured the same as FC-EDF except
for CP = CD = 0. This algorithm is to test whether the
simple proportional control can provide comparable
performance as PID control.

4.5. Performance Metrics
• Miss Ratio among admitted tasks (MRA = #Misses /
#(Admitted Task Instances)): Although a soft real-time task

can tolerate a small percent of deadline misses, it usually
requires a soft guarantee in term of miss ratio in order to
maintain its normal functionality. Therefore, the average
miss ratio among admitted tasks should be the most
important performance metric.
• CPU Utilization (UTIL): Soft real-time systems should
avoid under-utilizing the system resources to reduce costs,
thus the CPU utilization is another metric under
consideration.
• Hit Ratio among submitted tasks (HRS = #Hits /
#(Submitted Task Instances)): Hit ratio among submitted
tasks is a measure of the system throughput in term of the
percentage of task instances completed in time among all
the arrivals.
• Value Completion Ratio (VCR =(Σ(Values of hit task
instances) / Σ(Values of Submitted Task Instances)): Value

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0
M

R
A

Figure 5 MRA vs. etf

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0

U
T

IL

Figure 6 UTIL vs. etf

EDF+AC
EDF+P
FC-EDF
EDF

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0

H
R

S

Figure 7 HRS vs. etf

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0
V

C
R

Figure 8 VCR vs. etf

EDF+AC
EDF+P
FC-EDF
EDF

completion ratio considers the quality of the results. A task
that misses its deadline contributes 0 value. A task instance
completed with a lower service level contributes a lower
value.

4.6. Experiment A: Steady execution time
Experiment A evaluates the performance of the scheduling
algorithms (EDF, EDF+AC, EDF+P and FC-EDF) when
the average execution time of each periodic task is
statistically steady, but different from the estimation. etf is
constant through each run, but the actual execution time of
each task instance is a random value that differs over time.
Each algorithm made 13 set of runs with each set for a
different etf values in the range [0.4, 1.6]. These
experiments are interesting since, in real-world
applications, it is impossible to make the estimation of
execution time the same as the average actual execution
time at all times. This problem is avoided in hard real-time
systems by using worst-case estimation (etf << 1.0).
However, soft real-time systems usually use nominal
estimations instead of worst-case estimations due to cost
considerations. It is thus important for a soft real-time
system to maintain satisfactory performance even when the
estimation is different from the average actual execution
times. This is one place the value of feedback control is
demonstrated. Experiment A evaluates the algorithms under
situations when the execution time is statistically steady.
The performance under conditions when the execution time
changes dramatically is studied in Experiment B. This is
another place where feedback proves very valuable.
Experiment A results are illustrated in Figures 5-8. Each
point in Figure 5-8 is the average value of 30 runs. The
90% confidence interval for each point of MRA, UTIL,
HRS, and VCR is within ±0.0006, ±0.0058, ±0.0066 and
±0.0046, respectively. Each run lasts for 2880000 time
units (1200 SP).

From Figure 5, we see that both FC-EDF and EDF+P
maintains a very low MRA (<1%) throughout the etf
interval. The MRA of FC-EDF is closer to the set point
(1%) and thus slightly higher than EDF+P since the
Integral control reduces the steady state error of the control.
EDF’s MRA increases sharply when etf > 0.5 and the
system is overloaded. This shows pure EDF cannot provide
acceptable performance in resource-insufficient systems.
EDF+AC maintains low MRA when etf < 1, however, its
performance degrades sharply when the average execution
time is larger than its estimation (etf > 1). This shows that
static admission control based on nominal estimations
cannot provide (soft) performance guarantees under all
situations. Figure 6 shows that EDF always achieves the
highest CPU utilization since it never rejects any tasks.
EDF+AC under-utilizes the system when the average
execution time is lower than the estimation (etf < 1). This
shows that static admission control cannot avoid wasting
the system resources under all situations. Similarly, EDF+P

also under-utilizes the utilization when etf < 1 similar to
EDF+AC. This is because EDF+P does not consider the
accumulated error, and the control signal (∆CPU)
computed with proportional control alone is too small to be
accommodated when the task utilization can only be
adjusted in discrete steps3. In comparison, with the PID
control, FC-EDF maintains high CPU utilization in all the
situations. We can also see that the CPU utilization of FC-
EDF is consistently higher than EDF+P even when (etf >
1).

Figures 7 and 8 compare the throughput of the
algorithms in term of HRS and VCR. EDF+AC and EDF+P
has a low throughput when (etf < 1) as a result of admission
control based on pessimistic estimation. EDF has the
highest throughput when the system is lightly loaded and
degrades fast as the system load increases. We should also
note EDF achieves its throughput by greedily accepting all
the tasks while at the cost of poor performance for each
task (no performance guarantees for admitted tasks). FC-
EDF’s throughput is slightly lower than EDF when the
system is lightly loaded (This is actually a result in the
initial phase and the PID control drives the throughput to
the same level as EDF after a short learning period). When
the system is overloaded, FC-EDF consistently achieves the
highest throughput in all situations (except for when etf =
1.6 when it is slightly lower than EDF+P).

In summary, Experiment A demonstrates that under
situations when the estimation of execution time differs
from the (statistically steady) actual execution time, FC-
EDF is able to (1) provide a soft performance guarantee for
admitted tasks; (2) achieving high system utilization; and
(3) high throughput. None of the other algorithms under
comparison can meet these goals simultaneously.

4.7. Experiment B: Dynamic execution time
In experiment B, the etf is dynamically changed every
720000 time units (300 SP) in order to study the response
of the scheduling algorithms when the average system load
changes dramatically. The etf settings in different intervals
are listed in table 2.

Interval (SP) 0-300 300-600 600-900 900-1200
etf 0.8 1.3 0.8 1.2

Table 2 etf setting in Experiment B

3 While a larger CP can amplify the control signal, it will also cause
severe oscillation and even instability in the system response.

Figures 9-11 illustrates the sampled MRA and UTIL of
FC-EDF, EDF+AC and EDF (EDF+P is dropped in this
experiment since its performance is consistently worse than
FC-EDF) in a typical run. From Figure 9, we can see that
the system starts with approximately 80% of utilization (the
top curve) and 0 miss ratio (the bottom curve) as a result of
the pessimistic admission control. However, after a short
learning period (43 SP), the PID control in FC-EDF causes
the system to increase its utilization (by increasing service
levels and admitting more tasks) to close to 100%. The
system maintains a high utilization and low miss ratio until

the end of 300 SP when the etf suddenly increases to 1.3,
which implies that the system load suddenly increases by
over 60%. This causes the big spike on miss ratio at time
300 SP in Figure 9. FC-EDF responds immediately by
reducing the load (i.e., reducing service levels) to below
100% within 3 SP. In addition to the proportional control,
the fast response is also due to the derivative control in FC-
EDF which responses to the sudden increase in the miss
ratio. The system comes back to low miss ratio and high
utilization and stays this way until 600 SP when the etf is
reduced to 0.8 (which corresponds to an over 60% loss in

0 500 1000

Time (2400 unit)

0.0

0.2

0.4

0.6

0.8

1.0

M
R

A
 a

nd
 U

T
IL

Figure 11 Sampling MissRatio and CPU Utilization of EDF

CPU Utilization
MissRatio

0 500 1000

Time (2400 unit)

0.0

0.2

0.4

0.6

0.8

1.0

M
R

A
 a

nd
 U

T
IL

Figure 10 Sampling MissRatio and CPU Utilization of EDF+AC

CPU Utilization
MissRatio

0 500 1000

Time (2400 unit)

0.0

0.2

0.4

0.6

0.8

1.0

M
R

A
 a

nd
 U

T
IL

Figure 9 Sampling MissRatio and CPU Utilization of FC-EDF

CPU Utilization
MissRatio

system load). Again, the FC-EDF responds by increasing
the system load. Within 35 SP, the utilization is driven back
close to 100% and the system maintains low miss ratio and
high utilization afterwards. At the end of 900 SP, the etf is
increased to 1.2 and, similar to the time at 300 SP, the
system is back to a satisfactory performance state. We can
also see that all through the run, the MRA is 0 in most
sampling periods but non-zero (around 10% except for the
short transition periods between different etf intervals) in a
small portion of sampling periods. This is the penalty for
achieving high utilization (around 95% throughout the run
except for the short transition periods) and throughput of
the system. Note that due to the random nature of the
system load, it is impossible to maintain both 0 miss ratio
and 100% utilization all the time.

In contrast, from Figure 10, we see that EDF+AC
achieves 0 miss ratio at the cost of low utilization (around
80%) in 0-300 SP and 600-900 SP (when etf < 1.0).
However, the miss ratio is around 20-25% in 300-600 SP
and 900-1200 SP (when etf > 1.0). From Figure 11, we can
see the MRA is around 40% or 65% at different intervals for
EDF, which performs even worse that EDF+AC.

MRA UTIL HRS VCR
FC-EDF 0.011 0.954 0.796 0.537
EDF+AC 0.127 0.889 0.440 0.431
EDF 0.518 1.000 0.482 0.482

Table 3 Overall performance in Experiment B

In summary, the overall performance of the algorithms
is listed in Table 3 (Each data is the average value of 30
runs. The 90% confidence interval of each value of MRA,
UTIL, HRS, and VCR is within ±0.0006, ±0.0023, ±0.0068,
and ±0.0026, respectively). FC-EDF effectively adapts to
the radical changes in the execution time and system load,
and maintains satisfactory performance throughout the run
time. In contrast, both EDF and EDF+AC are unable to
handle the workload and render poor performance.

4.8. Discussions on overhead
Feedback control scheduling algorithms can introduce extra
overhead compared with open-loop scheduling algorithms.
The overhead is ignored in the simulation experiments for
the following reasons. First, the feedback controller can be
executed at a much lower rate than application tasks. In both
experiments, FC-EDF maintains satisfactory performance
while more than 100 task instances are executed between
two subsequent invocations of the feedback controller.
Second, the control algorithm is not complex. The
bookkeeping of the miss ratio, the PID control function, and
admission control adjustment all cost constant time. The
service-level controller is a linear-time (in terms of the
number of admitted tasks) algorithm. The overhead issue
will be further investigated in our future research as we vary
the period of the feedback controller.

5. Related Work
The idea of using feedback information to adjust the
schedule has been used in general-purpose operating
systems in the form of multi-level feedback queue
scheduling [Blev76]. The system monitors each task to see
if it consumes a time slice or does I/O and adjusts its
priority accordingly. This type of control is a crude
correction term that seems to work via ad hoc methods. No
systematic study has been done. [Stee99] presented a
feedback-based scheduling scheme that adjusts CPU
allocation based on application-dependent progress
monitors. This work is done in the context of general
operating systems and the performance of real-time tasks is
not addressed.

In the area of real-time databases, Haritsa et. al.
[Hari91] proposed Adaptive Earliest Deadline (AED), a
priority assignment policy based on EDF. In order to
stabilize the performance of EDF under overload
conditions, AED features a feedback control loop that
monitors transactions’ deadline miss ratio and adjusts
transaction priority assignment accordingly. Adaptive
virtual deadline first [Pang95] aims to achieve the fairness
of an EDF based scheduler to transactions with different
sizes. The linear correlation between deadline miss ratio
and transaction size in the system is measured and fed back
to the scheduler, which adjusts scheduling parameters
dynamically. However, the feedback control in these
algorithms is ad hoc and the issues of stability of the
schedulers is not addressed.

[Seto96] and [Ryu98] both propose to integrate the
design of a real-time controller with the scheduling of real-
time control systems. [Seto96] introduced a system
performance index to describe the control cost and tracking
errors of a control system. Their approach was to assign
frequencies to control tasks that optimize the system
performance index under resource constraints in the system.
[Ryu98] is based on a generic analytical feedback control
system model, which expresses the system performance as
functions of the end to end timing constraints at the system
level. A heuristic algorithm is used to find the end-to-end
timing constraints that can achieve the required system
performance. They then use the period calibration method
[Gerb95] to derive the timing constraints for each task in
the system. Both [Seto96] and [Ryu98] aim at providing
design tools that enable control engineers to take into
consideration scheduling in the early design stage of control
systems. The scheduling algorithms in both of these cases
are still open loop scheduling algorithms.

[Becc99] and [Shin99] both utilized the flexible timing
constraints as a mechanism for graceful performance
degradation in control systems. Both of the works assumed
the execution times are known and focused on how to
reassign the periods for tasks to satisfy the utilization
constraints. Instead, our work focuses on using feedback

control loops to maintain satisfactory deadline miss ratio
when the task execution times change dynamically.

Jehuda and Israeli [Jehu98] proposed an automated
software meta-controller to dynamically reconfigure real-
time systems. Compared with feedback control real-time
scheduling, the software meta-control is a higher level
control that occurs only when the system mode changes.

In the area of multimedia communication, several
papers [Meer97][Li98][Abde98] presented feedback control
architectures and algorithms for QoS control. These works
are targeted at supporting end-to-end QoS in distributed
multimedia communication and they are not scheduling
algorithms. Meeting task deadlines is not a focus of these
works.

The idea and framework of feedback control
scheduling has been presented in our earlier paper [Stan99].
As an evaluation and extension to our earlier work, this
paper presents simulation experiments that verifies the
advantage of feedback control scheduling in unpredictable
dynamic environments. In this paper, we also present a
discrete control model and stability analysis of the feedback
control scheduling system.

6. Conclusion
In our work, we are systematically exploring the use of
feedback control concepts in soft real-time scheduling
systems. The goal is the development of a theory and
practice of feedback control scheduling. This would be a
new paradigm for real-time scheduling. We have also
demonstrated feasibility of the basic approach by
developing a specific algorithm called FC-EDF and
scheduling architecture as presented here. Another
contribution of our work is that the key performance metric
of the real-time system – the deadline miss ratio – is
directly controlled by the scheduler. The feedback control
scheduler can achieve a soft performance guarantees in
term of deadline miss ratios. An analytical model of the
scheduling system is introduced and analyzed to facilitate
tuning the scheduling algorithm systematically. The
simulation experiments demonstrate that FC-EDF can
maintain satisfactory deadline miss ratio and high system
utilization when the workload changes dramatically.

Acknowledgment
The authors wish to thank Tarek Abdelzaher for finding an
error in the earlier manuscript of this paper.

References
[Abde98] T. F. Abdelzaher and Kang G. Shin, "End-host
Architecture for QoS-Adaptive Communication" IEEE RTAS,
June 1998.
[Becc99] G. Beccari, et. al., “Rate Modulation of Soft Real-Time
Tasks in Autonomous Robot Control Systems”, EuroMicro
Conference on Real-Time Systems, June 1999.

[Blev76] P. R. Blevins and C. V. Ramamoorthy, “Aspects of a
dynamically adaptive operating systems”, IEEE Transactions on
Computers, Vol. 25, No. 7, pp. 713-725, July 1976.
[Butt95] G. Buttazzo and J. A. Stankovic, “Adding Robustness in
Dynamic Preemptive Scheduling”, Responsive Computer Systems:
Steps Toward Fault-Tolerant Real-Time Systems (D. S. Fussell
and M. Malek Ed.), Kluwer Academic Publishers, 1995.
[Gerb95] R. Gerber, S. Hong and M. Saksena, “Guaranteeing
Real-Time Requirements with Resource-Based Calibration of
Periodic Processes”, IEEE Transactions on Software Engineering,
Vol. 21, No. 7, July 1995.
[Hari91] J. R. Haritsa, M. Livny and M. J. Carey, “Earliest
Deadline Scheduling for Real-Time Database Systems”, IEEE
RTSS, 1991.
[Jehu98] J. Jehuda and A. Israeli, “Automated Meta-Control for
Adaptable Real-Time Software”, Real-Time Systems J., 14, 1998.
[Leho89] J. P. Lehoczky, L. Sha and Y. Ding, “The Rate
Monotonic Scheduling Algorithm – Exact Characterization and
Average Case Behavior”, IEEE RTSS, 1989.
[Li98] B. Li, K. Nahrstedt, “A Control Theoretical Model for
Quality of Service Adaptations”, in IEEE International Workshop
on Quality of Service, May 1998.
[Liu73] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”, JACM,
Vol. 20, No. 1, pp. 46-61, 1973.
[Liu91] J. W. S. Liu, et. al., “Algorithms for Scheduling Imprecise
Computations”, IEEE Computer, Vol. 24, No. 5, May 1991.
[Meer97] J. B. de Meer, “On the Specification of EtE QoS
Control”, (A. Campbell and K. Nahrstedt Eds.) Building QoS into
Distributed Systems, Chapman & Hall, 1997.
[Pang95] H. Pang and M. J. Carey, “Multiclass Query Scheduling
in Real-Time Database System”, IEEE Trans. on Knowledge and
Data Engineering, vol. 7, no. 4, August 1995.
[Rama84] K. Ramamritham and J. A. Stankovic, “Dynamic task
scheduling in distributed hard real-time systems”, IEEE Software,
Vol. 1, No. 3, July 1984.
[Ryu98] M. Ryu and S. Hong, “Toward Automatic Synthesis of
Schedulable Real-Time Controllers”, Integrated Computer-Aided
Engineering, 5(3) 261-277, 1998.
[Seto96] D. Seto, et. al., “On Task Schedulability in Real-Time
Control Systems”, IEEE RTSS, December 1996.
[Shin99] K. G. Shin and C. L. Meissner, “Adaptation and Graceful
Degradation of Control System Performance by Task Reallocation
and Period Adjustment”, EuroMicro Conference on Real-Time
Systems, June 1999.
[Stan98] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C.
Buttazzo, Deadline Scheduling for Real-Time Systems – EDF and
Related Algorithms, Kluwer Academic Publishers, 1998.
[Stan99] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The Case
for Feedback Control Real-Time Scheduling”, EuroMicro
Conference on Real-Time Systems, June 1999.
[Stee99] D. C. Steere, et. al., "A Feedback-driven Proportion
Allocator for Real-Rate Scheduling", Operating Systems Design
and Implementation, Feb 1999.
[Zhao87] W. Zhao, K. Ramamritham and J. A. Stankovic,
“Preemptive Scheduling Under Time and Resource Constraints”,
IEEE Transactions on Computers 36(8), 1987.

