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Abstract

EMERALDS (Extensible Microkernel for Embedded, ReAL-
time, Distributed Systems) is a real-time microkernel de-
signed for small-memory embedded applications. These ap-
plications must run on slow (15–25MHz) processors with
just 32–128 kbytes of memory, either tokeep production
costs down in mass-produced systems or to keep weight and
power consumption low. To be feasible for such applica-
tions, the OS must not only be small in size (less than 20
kbytes), but also have low-overhead kernel services. Unlike
commercial embedded OSs which rely on carefully-crafted
code to achieve efficiency, EMERALDS takes theapproach
of re-designing the basic OS services of task scheduling, syn-
chronization, communication, and system call mechanism
by using characteristics found in small-memory embedded
systems, such as small code size anda priori knowledge of
task execution and communication patterns. With these new
schemes, the overheads of various OS services are reduced
20–40% without compromising any OS functionality.

1 Introduction

Real-time computing today is no longer limited to large,
high-powered, expensive applications. Increasingly, real-
time embedded controllers are being used in a wide variety
of small control applications, from engine control in auto-
mobiles, to voice compression in cellular phones and im-
age stabilization in camcorders. As real-time systems, these
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embedded controllers execute multiple concurrent computa-
tion tasks with strict time constraints (deadlines) that must
be met in a predictable manner. Furthermore, these tasks are
executed on systems with very minimal hardware — slow
processors (15-25MHz) with small memories (tens of kilo-
bytes), often having the entire system on a single integrated
circuit. Such restricted hardware is needed to keep produc-
tion costs down in mass-produced items, and to keep weight
and power consumption low in portable and hand-held de-
vices. The combined requirements of real-time computing
and low-cost, small-memory platforms has created a need for
real-time operating systems (RTOSs) optimized specifically
for the small-memory computing devices.

Unfortunately, most conventional RTOSs are not appli-
cable to small-memory embedded controllers. Commer-
cial RTOSs like pSOS [31], QNX [9], and VxWorks [35],
as well as research RTOSs like HARTOS [27], the Spring
Kernel [29], Harmony [7], and RT-Mach [33] collectively
cover a wide range of platforms, from stand-alone systems
to multiprocessors and distributed systems. However, most
of these RTOSs were designed with relatively powerful sys-
tems in mind: processors with several megabytes of memory
and networks with at least tens of Mbit/s bandwidth. Even
Windows CE, designed for small, hand-held machines, re-
quires over 200KB ROM for a minimal kernel [23]. As a
result, most conventional RTOSs are not applicable to small-
memory embedded controllers.

Some vendors have targeted small-memory embedded
applications with products like RTXC [6], pSOS Select, and
a dozen other small, real-time kernels. These RTOSs not
only provide predictable services, but also are efficient and
small in size, with kernel code size under 20 kbytes. Their
approach is to take a core set of OS services (task schedul-
ing, semaphores, timers, interrupt handling, etc.), implement
them using optimized, carefully-crafted code, and package
them into an OS.

EMERALDS is an RTOS designed specifically for small-
memory embedded systems. Like the above-mentioned
commercial RTOSs, EMERALDS also provides a core set
of OS services in a small-sized kernel, but our approach
for achieving efficiency in EMERALDS is to rely not on
carefully-crafted code, but on new OS schemes and al-
gorithms. We focus primarily on real-time task schedul-
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ing, task synchronization through semaphores, and intra-
node message-passing.1 We use some basic characteristics
common to all small-memory embedded systems such as
small kernel and application code size anda priori knowl-
edge of task communication and execution patterns to lower
OS overheads without compromising OS functionality, thus
making more computational resources available for the ex-
ecution of application tasks. Some of these characteristics
are also found in other real-time applications, so some of the
schemes we present (such as the task scheduler) have appli-
cability beyond small-memory embedded systems.

In the next section, we describe the general characteris-
tics of small-memory embedded systems and the constraints
they place on RTOSs. We then provide a brief overview of
EMERALDS and show how it differs from other RTOSs.
Sections 5–7 describe and evaluate our real-time scheduling,
synchronization, and message-passing schemes, before con-
cluding in Section 8.

2 Application requirements

Our target embedded applications use single-chip micro-
controllers with relatively slow processing cores running at
15–25 MHz. Typical examples are the Motorola 68332, In-
tel i960, and Hitachi SH-2 controllers. All ROM and RAM
are on-chip which limits memory size to 32–128 kbytes, thus
limiting useful RTOS kernels to around 20 kbytes code-size.
These applications are either uniprocessor (such as cellular
phones and home electronics) or distributed, consisting of 5–
10 nodes interconnected by a low-speed (1–2 Mbit/s) field-
bus network (such as automotive and avionics control sys-
tems).

We expect a typical workload on these systems to consist
of 10–20 concurrent, periodic2 real-time tasks, with a mix
of short (<10ms), medium (10–100ms), and long (>100ms)
period tasks. As with all embedded control applications,
interrupt and I/O services must be provided by the RTOS.
Small-memory embedded systems do not use disks, so file
system support is not needed in the RTOS. Most other OS
services, including task synchronization, task communica-
tions, and clock services must be provided.

3 Overview of EMERALDS

EMERALDS is a microkernel RTOS written in the C++
language. Following are EMERALDS’ salient features as
shown in Figure 1.

� Multi-threaded processes:

– Full memory protection for threads.

– Threads are scheduled by the kernel.

� IPC based on message-passing, mailboxes, and shared-
memory.

1Inter-node networking issues are discussed in [37, 40] and are
not covered in this paper.

2Periodic tasks are the major workload of most real-time sys-
tems.
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Figure 1 . EMERALDS’ architecture.

� Semaphores and condition variables for synchroniza-
tion, with priority inheritance.

� Support communication protocol stacks [41].

� Highly optimized context switching and interrupt han-
dling.

� Support for user-level device drivers.

Of these basic services, the last two deal with hardware de-
vices such as the on-chip timer and the processor’s interrupt
handling mechanism, so their overhead is dictated primar-
ily by the hardware, and there is little that the OS designer
can do to reduce overhead. The remaining services, how-
ever, present opportunities for innovative optimizations. The
thrust of EMERALDS is to come up with new optimized so-
lutions for embedded systems for the well-known problems
of scheduling, synchronization, and communication.

To provide all these services in a small-size kernel, we
make use of certain characteristics of embedded applica-
tions. First of all, our target applications are in-memory.
Moreover, embedded application designers know which re-
sources (threads, mailboxes, etc.) reside at which node, so
naming services are not necessary, allowing considerable
savings in code size. Also, nodes in embedded applica-
tions typically exchange short, simple messages over field-
buses. Threads can do so by talking directly to network de-
vice drivers, so EMERALDS does not have a built-in pro-
tocol stack. Further details regarding protocol stacks, de-
vice drivers, EMERALDS system calls, and other techniques
used to reduce code size in EMERALDS can be found in
[38]. With these techniques, EMERALDS provides a rich
set of OS services in just 13 kbytes of code (on Motorola
68040).
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4 How is EMERALDS different?

Microkernel optimization has been an active area of research
in recent years, butlittle effort has been made in addressing
the needs of real-time systems, let alone small-memory em-
bedded ones. In microkernels designed for general-purpose
computing such as Mach [1], L3 [20], and SPIN [3], re-
searchers focused on optimizing kernel services such as
thread management [5, 2], IPC [19], and virtual memory
management [25]. Virtual memory is not a concern in our
target applications. Thread management and IPCare im-
portant, but sources of overhead are different for embedded
real-time systems, necessitating different optimization tech-
niques.

Thread management is a concern in typical microkernels
because either the kernel itself has a large number of threads
and switching overhead, and stack use by these threads must
be minimized [5], or, in case of user-level threads, the kernel
must export the correct interface to these threads [2]. Neither
of these apply here, since although EMERALDS has kernel-
managed threads, the kernel itself uses no threads, and user
threads enter protected kernel mode to simply call kernel
procedures, simplifying interfaces. So, in EMERALDS, op-
timizing thread management takes the form of ensuring low-
overhead transition between user and kernel modes and pro-
viding efficient real-time scheduling of threads.

IPC is important in most microkernels because RPC is
used to communicate with user-level servers. Frequently-
accessed services such as file systems and virtual memory
are implemented as user-level servers. But embedded sys-
tems do not need these services. In EMERALDS, only inter-
node networking is implemented at the user-level and even
this server is accessed only infrequently (becausenodes are
loosely-coupled). Instead, IPC is important in embedded
systems for intra-node, inter-task communication and this is
what we address in EMERALDS.

Task synchronization has not received much attention
in the design of most microkernels, but it is of crucial im-
portance in embedded systems. The little research done in
this area has focused primarily on multiprocessors [22, 34],
whereas we are interested in uniprocessor locking.

In summary, design of an optimized OS for small-
memory real-time embedded applications is a largely under-
explored area of research. With embedded systems quickly
becoming part of everyday life, designing OSs targeted
specifically toward embedded applications has become im-
portant, and EMERALDS is a first step in this direction.

5 CSD scheduler

Scheduling real-time tasks to ensure that all tasks meet their
deadlines is an important part of any RTOS. In small embed-
ded systems, the efficiency of this scheduling takes on great
importance, since processing resources are so limited. Until
recently, embedded application programmers have primar-
ily used cyclic time-slice scheduling techniques in which the
entire execution schedule is calculated off-line, and at run-
time, tasks are switched in and out according to the fixed
schedule. This eliminates run-time scheduling decisions and

minimizes run-time overhead, but introduces several prob-
lems as follows:

� Entire schedules must be calculated offline, often
by hand, and are difficult and costly to modify as
task characteristics change through the design process.
Heuristics can be used [12], but result in non-optimal
solutions (i.e., feasible workloads may get rejected).

� High-priority aperiodic tasks receivepoor response-
time because their arrival times cannot be anticipated
off-line.

� Workloads containing short and long period tasks (as
is common in control systems) or relatively prime pe-
riods, result in very large time-slice schedules, wasting
scarce memory resources.

As embedded systems use increasingly-complex task
sets, cyclic schedulers are no longer suitable for task
scheduling. The alternative is to turn to priority-driven
schedulers likerate-monotonic(RM) [17, 21] andearliest-
deadline-first(EDF) [28, 21] which use task priorities to
make run-time scheduling decisions. They do not require
any costly off-line analysis, can easily handle changes in the
workload during the design process, and can handle aperi-
odic tasks as well. However, they do incur some overheads,
which we seek to minimize in EMERALDS.

The task scheduler’s overhead can be broken down
into two components:run-time overheadandschedulability
overhead. The run-time overhead is the time consumed by
the execution of the scheduler code, and is primarily due
to managing the queues of tasks and selecting the highest-
priority task to execute. Schedulability overhead refers to
the theoretical limits on task sets that are schedulable under
a given scheduling algorithm, in the ideal case where run-
time overheads are not considered. Together, these over-
heads limit the amount of useful real-time computation that
can be run on a processor.

We analyze the sources of these overheads in RM (which
statically assigns higher priority to shorter period tasks [17,
21]) and EDF (which dynamically changes priority, giving
highest priority to the earliest-deadline task [28, 21]), and
devise a hybrid scheduler that gives better performance than
both.

5.1 Run-time overhead

The run-time overhead (�t) has to do with parsing queues of
tasks and adding/deleting tasks from these queues.

When a running task blocks, the OS must update some
data structures to identify the task as being blocked and then
pick a new task for execution. We call the overheads asso-
ciated with these two steps theblocking overhead�tb and
theselection overhead�ts, respectively. Similarly, when a
blocked task unblocks, the OS must again update some inter-
nal data structures, incurring theunblocking overhead�tu.
The OS must also pick a task to execute (since the newly-
unblocked task may have higher priority than the previously-
executing one), so the selection overhead is incurred as well.
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Each task blocks and unblocks at least onceeach period
(unblocks at the beginning of the period, and blocks after
executingci time), incurring�tb + �tu + 2�ts overhead
per period. Overhead is greater if blocking system calls are
used; although it is task-dependent, for simplicity, we as-
sume half the tasks use one blocking call per period, thus
incurring an average per-period scheduler run-time overhead
of �t = 1:5(�tb +�tu + 2�ts). The workload utilization
is now calculated asU =

P
n

i=1
(ci +�t)=Pi.

Now, we calculate�t for both EDF and RM policies.
In EMERALDS, we have implemented EDF as follows. All
blocked and unblocked tasks are placed in a single, unsorted
queue.3 A task is blocked and unblocked by changing one
entry in the task control block (TCB), so�tb and�tu are
O(1). To select the next task to execute, the list is parsed and
the earliest-deadline ready task is picked, so�ts isO(n).

RM schedulers usually have a queue of ready tasks,
sorted by task priority, and blocking/unblocking involves
deleting/inserting tasks into this sorted queue. In EMER-
ALDS, we use a different implementation that permits some
semaphore optimizations (Section 6), while maintaining
similar run-time costs. All (blocked and unblocked) tasks
are kept in a queue sorted by task priority. A pointerhigh-
estP points to the first (highest-priority) task on the queue
that is ready to execute, so�ts is O(1). Blocking a task
requires modifying the TCB (as in EDF) and settinghigh-
estP to the next ready task. The latter involves scanning
the list, so in the worst case�tb is O(n). Unblocking, on
the other hand, only requires updating the TCB and com-
paring the task’s priority with that of the one pointed to by
highestP , changing the pointer if needed. Thus,�tu is
O(1).

For RM,�tb = O(n) whereas for EDF,�ts = O(n).
�tb is counted only once for every task block/unblock op-
eration while�ts is counted twice, which is why�t =
1:5(�tb + �tu + 2�ts) is significantly less for RM than
it is for EDF, especially whenn is large (15 or more).

The EDF and RM run-time overheads for EMERALDS
measured on a 25MHz Motorola 68040 processor are shown
in Table 1. Also shown for comparison is an implementation
of RM using a sorted heap. Unlessn is very large (58 in
this case), the total run-time overhead�t for a heap is more
than for a queue. As most real-time workloads do not have
enough tasks, heap implementations are avoided in scheduler
structures.

5.2 Schedulability overhead

The schedulability overhead is defined as1� U �, whereU�

is the ideal schedulable utilization. For a given workload
and a given scheduler,U� is the highest workload utiliza-
tion that the scheduler can feasibly schedule under the ideal
conditions that the scheduler’s run-time overhead is ignored.

Consider a workload ofn tasks,f�i : i = 1; 2; : : : ; ng,
where each task�i has a periodPi and an execution time

3Simple sorted queues haveO(n) insert/delete times, and per-
form poorly as priorities change often due to semaphore use (Sec-
tion 6). Heaps have long run times due to code complexity despite
O(log n) insert/remove times sincen is rarely very large.

EDF - queue RM - queue RM - sorted heap
�tb 1:6 1:0 + 0:36n 0:4 + 2:8dlog

2
(n+ 1)e

�tu 1:2 1:4 1:9 + 0:7dlog
2
(n+ 1)e

�ts 1:2 + 0:25n 0:6 0:6

Table 1 . Run-time overheads for EDF and RM (values are
in �s; n is the number of tasks). Also shows measurements
for RM when a heap is used instead of a linked list. Measure-
ments made using a 5MHz on-chip timer.

1 2 3 4 5 6 7 80

τ 1 τ 2 τ 3 τ 4 τ 1 τ 2 τ 3 τ
4

time

τ 5misses deadline

Figure 2 . RM scheduling of the workload in Table 2.

ci (assume that a task’s relative deadline equals its period).
Then, this workload has a utilizationU =

P
n

i=1
ci=Pi. EDF

can schedule all workloads withU � 1 (ignoring run-time
overheads)[21], soU� = 1 for EDF. Thus, EDF has zero
schedulability overhead.

RM, on the other hand, can haveU� < 1. Previous work
has shown that for RM,U� = 0:88 on average [17]. As
an illustration of nonzero schedulability overhead, consider
the workload shown in Table 2. Each task�i has deadline
di = Pi.

i 1 2 3 4 5 6 7 8 9 10
Pi (ms) 4 5 6 7 8 20 30 50 100 130
ci (ms) 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5

Table 2 . A typical task workload with U = 0:88. It is feasible
under EDF, but not under RM.

Figure 2 shows what happens if this workload is sched-
uled by RM. In the time interval[0; 4), tasks�1–�4 execute,
but before�5 can run,�1 is released again. Under RM,�1–�4
have higher priority than�5 (because of their shorterPi), so
the latter cannot run until all of the former execute for the
second time, but by then�5 has missed its deadline. This
makes the workload infeasible under RM and illustrates why
RM has a non-zero schedulability overhead.

On the other hand, if EDF is used to schedule the same
workload,�5 will run before�1–�4 run for the second time
(becaused5 = 8 is earlier than the deadlines of second invo-
cations of�1–�4) and the workload will be feasible.

5.3 CSD: a balance between EDF and RM

Going back to the workload in Table 2, notice that�5 is the
“troublesome” task, i.e., because of this task the workload is
infeasible under RM. Tasks�6–�10 have much longer peri-
ods, so they can be easily scheduled by any scheduler, be it
RM or EDF.
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We used this observation as the basis of the combined
static/dynamic (CSD) scheduler. Under CSD,�1–�5 will be
scheduled by EDF so that�5 will not miss its deadline. The
remaining tasks�6–�10 will use the low-overhead RM policy.
The run-time overhead is less than that of EDF (since the
EDF queue’s length has been halved), and since in the worst
case, CSD simply reduces to EDF, schedulability overhead
is same as for EDF (i.e., zero, hence much better than RM).
Thus, the total scheduling overhead of CSD is significantly
less than that of both EDF and RM.

The CSD scheduler maintains two queues of tasks. The
first queue is thedynamic-priority(DP) queue which con-
tains the tasks to be scheduled by EDF. The second queue
is the fixed-priority (FP) queue which contains tasks to
be scheduled by RM (or any fixed-priority scheduler such
as deadline-monotonic[18], but for simplicity, we assume
RM).

Given a workloadf�i : i = 1; 2; : : : ; ng sorted by RM-
priority (shortest-period-first), let�r be the “troublesome”
task, the longest period task that cannot be scheduled by RM.
Then, tasks�1–�r are placed in the DP queue while�r+1–
�n are in the FP queue. Priority is given to the DP queue,
since these tasks have higher RM-priority (shorter periods)
than those in the FP queue. A counter keeps track of the
number of ready tasks in the DP queue. When the sched-
uler is invoked, if the counter is non-zero, the DP queue is
parsed to pick the earliest-deadline ready task. Otherwise,
the DP queue is skipped completely and the scheduler picks
the highest-priority ready task from the FP queue (pointed to
by highestP ).

5.4 Run-time overhead of CSD

The run-time overhead of CSD depends on whether the task
being blocked or unblocked is a DP or FP task. There are
four possible cases to consider:

1. DP task blocks:�tb is O(1) (same as for EDF). The
worst case�ts occurs when there are other ready tasks
in the DP queue, requiring a scan through the DP queue
to select the next task. So,�ts = O(r).

2. DP task unblocks:�tu isO(1). At least one ready task
is in the DP queue (the one that was just unblocked),
always requiring a parse of ther-long DP queue, so
�ts = O(r).

3. FP task blocks:�tb is the same as for RM, but with
a shorter queue, so�tb = O(n � r). Since an FP
task was executing and all DP tasks have higher prior-
ity, the DP queue cannot have any ready tasks at this
point. The scheduler just selectshighestP from the
FP queue, so�ts = O(1) (same as for RM).

4. FP task unblocks:�tu isO(1) (same as for RM). The
DP queue may or may not have ready tasks, but for
the worst-case�ts, we must assume that it does, so
�ts = O(r).

From this analysis, the total scheduler overhead for
CSD is �tb + �ts block + �tu + �ts unblock per task

block/unblock operation. For DP tasks, this becomesO(1)+
O(r) + O(1) + O(r) = 2O(r), equivalent to anr-long
list parsed twice, whereas the overhead for FP tasks equals
O(n � r) + O(1) + O(1) + O(r) = O(n) (n-long list
parse once). Therefore, overhead of CSD is significantly less
than that of EDF (n-long list parsed twice) and only slightly
greater than that of RM (n-long list parsed once), as is cor-
roborated by performance measurements in Section 5.7.

With lower total overheads, CSD can schedule some task
sets that are not schedulable under EDF or RM when run-
time overheads are included. A detailed analysis of workload
schedulability tests for CSD, EDF, and RM that take into
account run-time overheads is presented in [36].

5.5 Reducing CSD run-time overhead

The CSD’s main advantage is that even though it uses EDF
to deliver good schedulable utilization, it reduces run-time
overhead by keeping the DP queue short. As the number of
tasks in the workload increases, the DP queue length also in-
creases thus degrading CSD performance. We need to mod-
ify CSD to keep run-time overhead under control as the num-
ber of tasksn increases.

5.5.1 Controlling DP queue run-time overhead

Under CSD, the execution time of each task in the DP queue
increases by�t(DP ) which depends on length of the DP
queuer. �t(DP ) increases rapidly asr increases, which
degrades performance of CSD.

Our solution is to split the DP queue into two queues
DP1 and DP2. DP1 has tasks with higher RM-priority, so the
scheduler gives priority to DP1. Both DP1 and DP2 are ex-
pected to be significantly shorter than the original DP queue
so that the run-time overhead of the modified scheme (called
CSD-3 for its three queues) should be well below that of the
original CSD scheme (henceforth called CSD-2).

5.5.2 Run-time overhead of CSD-3

The run-time overheads for CSD-3 can be derived using the
same reasoning as used for CSD-2 in Section 5.4. The over-
heads for different cases are shown in Table 3, whereq is
the length of the DP1 queue andr is the total number of
DP tasks (sor � q is the length of DP2 queue). The run-
time overhead associated with DP1 tasks isO(r), a signifi-
cant improvement overO(2r) for CSD-2. Since DP1 tasks
have the shortest periods in the workload, they execute most
frequently, and the reduction in their overheads greatly im-
proves CSD-3 performance over CSD-2.

The run-time overhead of DP-2 tasks is reduced as well
fromO(2r) in CSD-2 toO(2r� q). Similarly, the overhead
for FP tasks is reduced fromO(n) toO(n� q).

5.5.3 Allocating tasks to DP1 and DP2

If all DP tasks had the same periods, we could split them
evenly between DP1 and DP2. Each queue’s length will be
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DP1 DP2 FP
Task �tb O(1) O(1) O(n� r)
Blocks �ts O(r � q) O(r) O(1)
Task �tu O(1) O(1) O(1)
Unblocks �ts O(q) O(r � q) O(r � q)

Total Overhead O(r) O(2r � q) O(n� q)

Table 3 . Run-time overheads for CSD-3. The values as-
sume that the DP2 queue is longer than the DP1 queue
(max(q; r � q) = r � q) which is typically the case.

half that of the original DP queue, cutting the run-time over-
head of scheduling DP tasks in half.4 When tasks have dif-
ferent periods, two factors must be considered when dividing
tasks between DP1 and DP2:

� Tasks with the shortest periods are responsible for the
most scheduler run-time overhead. For example, sup-
pose�t = 0:1 ms. A task withPi = 1 ms will be
responsible for�t=Pi = 10% CPU overhead, whereas
a task withPi = 5 ms will be responsible for only
2%. We should keep only a few tasks in DP1 to keep
�t(DP1) small. DP2 will have more tasks making
�t(DP2) > �t(DP1), but since DP2 tasks execute
less frequently,

P
i
�t=Pi for the two queues will be

approximately balanced.

� Once the DP tasks are split into two queues, they no
longer incur zero schedulability overhead. Although
tasks within a DPx queue are scheduled by EDF, the
queues themselves are scheduled by RM (all DP1 tasks
have statically higher priorities than DP2 tasks), so
CSD-3 has non-zero schedulability overhead. Task al-
location should minimize thesumof the run-time and
schedulability overheads. For example, consider the
workload in Table 2. Suppose the least run-time over-
head results by putting tasks�1–�4 in DP1 and the rest
of the DP tasks in DP2, but this will cause�5 to miss
its deadline (see Figure 2). Putting�5 in DP1 may lead
to slightly higher run-time overhead, but will lower
schedulability overhead so that�5 will meet its dead-
line.

At present, we use an off-line exhaustive search (using
the schedulability test described in [36]) to find the best pos-
sible allocation of tasks to DP1, DP2, and FP queues. The
search runs inO(n2) time for three queues, taking 2–3 min-
utes on a 167MHz Ultra-1 Sun workstation for a workload
with 100 tasks.

5.6 Beyond CSD-3

The general scheduling framework of CSD is not limited to
just three queues. It can be extended to have4; 5; : : : ; n

4Increasing the number of queues also increases the overhead of
parsing the prioritized list of queues, but our measurements showed
this increase to be negligible (less than a microsecond on Motorola
68040) when going from two to three queues.

queues. The two extreme cases (one queue andn queues)
are both equivalent to RM while the intermediate cases give
a combination of RM and EDF.

We would expect CSD-4 to have slightly better perform-
ance than CSD-3 and so on (as confirmed by evaluation re-
sults in Section 5.7), although the performance gains are ex-
pected to taper off once the number of queues gets large and
the increase in schedulability overhead (from having multi-
ple EDF queues) starts exceeding the reduction in run-time
overhead.

For a given workload, the best number of queues and the
best number of tasks per queue can be found through an ex-
haustive search, but this is a computationally-intensive task
and is not discussed further in this paper. We demonstrated
the usefulness of the general CSD scheduling framework and
how it can be beneficial in real systems.

5.7 CSD performance

We evaluate the usefulness of CSD in scheduling a wide vari-
ety of workloads by comparing CSD to EDF and RM. In par-
ticular, we want to know which is the best scheduler when all
scheduling overheads (run-time and schedulability) are con-
sidered. Table 1 shows run-time overhead for EDF and RM
on a 25MHz Motorola 68040 processor; the same overheads
apply to CSD DP and FP queues respectively, though fewer
tasks are in these queues (onlyn�r in FP queue, etc.). CSD-
x also requires an additionalx � 0:55�s to parse the list of
queues to find a queue with ready tasks.

Our test procedure involves generating random task
workloads, then for each workload, scaling the execution
times of tasks until the workload is no longer feasible for
a given scheduler. The utilization at which the workload be-
comes infeasible is called thebreakdown utilization[13]. We
expect that with scheduling overheads considered, CSD will
have the highest breakdown utilization.

Because scheduling overheads are a function of the num-
ber of tasks (n) in the workload, we tested all schedulers for
workloads ranging fromn = 5 to n = 50. For eachn, we
generate 500 workloads with random task periods and exe-
cution times. We scale the execution times until the work-
loads becomes infeasible to find the average breakdown uti-
lizations.

The run-time overhead of priority-based schedulers de-
pends not only on the number of tasks, but on the periods
of tasks as well (since the scheduler is invoked every time a
task blocks or unblocks). Short period tasks lead to frequent
invocation of the scheduler, resulting in high run-time over-
head, whereas long-period tasks produce the opposite result.
In our tests, we vary not only the number of tasks, but the pe-
riods of tasks as well. For each base workload (with a fixed
n), we produce two additional workloads from it by divid-
ing the periods of tasks by a factor of 2 and 3. This allows
us to evaluate the impact of varying task periods on various
scheduling policies.

To mimic the mix of short and long period tasks expected
in real-time embedded systems, we generate the base task
workloads by randomly selecting task periods such thateach
period has an equal probabilityof being single-digit (5–9ms),
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Figure 3 . Average breakdown utilizations for CSD, EDF, and
RM for base workloads.
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Figure 4 . Average breakdown utilizations for CSD, EDF, and
RM when task periods are scaled down by a factor of 2.

double-digit (10–99ms), or triple-digit (100–999ms). Fig-
ures 3–5 show breakdown utilizations for base workloads
and when task periods are divided by 2 and 3, respectively.
Each point represents the average breakdown utilization for
500 workloads with a fixedn. In Figure 3, task periods are
relatively long (5ms–1s). The run-time overheads are low
which allows EDF to perform close to its theoretical lim-
its. Even then, CSD performs better than EDF. CSD-4 has
17% lower total scheduling overhead forn = 15 and this
increases to more than 40% forn = 40 as EDF’s strong de-
pendency onn begins to degrade its performance.

Figure 4 is for periods in the 2.5–500ms range. For these
moderate length periods, initially EDF is better than RM,
but then EDF’s run-time overhead increases to the point that
RM becomes superior. Forn = 15, CSD-4 has 25% less
overhead than EDF, while forn = 40, CSD-4 has 50% lower
overhead than RM (which in turn has lower overhead than
EDF for this largen).

Figure 5 shows similar results. Task periods range from
1.67–333ms, and these short periods allow RM to quickly
overtake EDF. Nevertheless, CSD continues to be superior
to both.

Figures 3–5 also show a comparison between three vari-
eties of CSD. They show that even though a significant per-
formance improvement is seen from CSD-2 to CSD-3 (espe-
cially for largen), only a minimal improvement is observed
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Figure 5 . Average breakdown utilizations for CSD, EDF, and
RM when task periods are scaled down by a factor of 3.

from CSD-3 to CSD-4. This is because even though the run-
time overhead continues to decrease, the increase in schedul-
ability overhead almost nullifies the reduction in run-time
overhead.

CSD-4 could be expected to give significantly better
breakdown utilization than CSD-3 only if workloads can
be easily partitioned into four queues without increasing
schedulability overhead, but this is rarely the case. DP1
tasks have statically higher priority than DP2 tasks, DP2
tasks have higher priority than DP3 tasks, and so on. As
the number of queues increases, the schedulability overhead
starts increasing from that of EDF to that of RM. This is why
we would expect that asx increases, performance of CSD-
x will quickly reach a maximum and then start decreasing
because of reduced schedulability and increased overhead of
managingx queues (which increases by0:55�s per queue).
Eventually, asx approachesn, performance of CSD-x will
degrade to that of RM.

The results presented here confirm the superiority of the
CSD scheduling framework as compared to EDF and RM.
The results show that even though CSD-2 suffers from high
run-time overhead for largen, CSD-3 overcomes this prob-
lem without any significant increase in schedulability over-
head. This way, CSD-3 delivers consistently good perform-
ance over a wide range of task workload characteristics.
Increasing the number of queues gives some further im-
provement in performance, but the schedulability overhead
starts increasing rapidly so that using more than three queues
yields only a minimal improvement in performance.

6 Efficient semaphore implementation

Object-oriented (OO) programming is ideal for designing
real-time software, as it models nicely the real-world enti-
ties, such as sensors, actuators, and controllers, that real-time
systems deal with: the object’s internal data represents the
physical state (temperature, pressure, position, RPM, etc.)
and the object’s methods allow the state to be read or modi-
fied. These notions of encapsulation and modularity greatly
simplify the software design process reducing real-time soft-
ware to a collection of threads of execution, that invoke the
methods of various objects [11].
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Conceptually, the OO paradigm is very appealing, but
does incur some costs. Object methods must synchronize
access to object data and ensure mutual exclusion, typically
done through semaphores [4, 8, 10]). As semaphore calls
are made in every method invocation, semaphore operations
are among the most heavily-used OS primitives when OO
design is used. This calls for new and efficient schemes for
implementing semaphore locking in EMERALDS.

Previous work in lowering the overhead of semaphore
operations has focused on either relaxing the semaphore se-
mantics to get better performance [30] or coming up with
new semantics and new synchronization policies [32]. The
problem with this approach is that such new/modified se-
mantics may be suitable for some particular applications, but
usually do not have wide applicability.

We take an approach of providing full semaphore seman-
tics (with priority inheritance [26]), but optimizing the im-
plementation of these semaphores by exploiting certain fea-
tures of embedded applications. We note that the follow-
ing discussion primarily deals with semaphores used as bi-
nary mutual-exclusion locks (mutexes), but is more generally
applicable to counting semaphores as well.

6.1 Standard implementation

The standard procedure to lock a semaphore can be summa-
rized as follows:

if (sem locked) {
do priority inheritance;
add caller thread to wait queue;
block; /* wait for sem to be

released */
}
lock sem;

Priority inheritance [26] is needed in real-time systems
to avoid unbounded priority inversion [32]. Without it,
a medium-priority task may indefinitely block a higher-
priority task waiting for some low-priority task holding a
needed semaphore.

We are most interested in worst-case overheads, which
occur when some threadT2 invokes theacquire sem()
call on a semaphore already locked by some lower priority
threadT1. Figure 6 shows a typical scenario for this situa-
tion. ThreadT2 wakes up (after completing some unrelated
blocking system call) and then callsacquire sem() . This
results in priority inheritance and a context switch toT1, the
current lock holder. AfterT1 releases the semaphore, its pri-
ority returns to its original value and a context switch occurs
to T2. These steps are outlined in Figure 7.

Two context switches (C2 andC3) are directly due to the
acquire sem() call. As context switches incur a signif-
icant overhead, eliminating some of these context switches
will greatly reduce run-time overhead. Another area of im-
provement is in the priority inheritance (PI) steps. For DP
tasks, the PI steps takeO(1) time, since the DP tasks are
not kept sorted. However, for tasks in the FP queue, each
of the two PI steps will takeO(n � r) time, since the tasks
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Figure 6 . A typical scenario showing thread T2 attempting
to lock a semaphore already held by thread T1. Tx is an un-
related thread which was executing while T2 was blocked.

unblockT2
context switchC1 (Tx to T2)

(T2 executes and calls acquiresem())
do priority inheritance (T2 to T1)
blockT2
context switchC2 (T2 to T1)

(T1 executes and calls releasesem())
undo priority inheritance ofT1
unblockT2
context switchC3 (T1 to T2)

Figure 7 . Operations involved in locking a semaphore for
the scenario shown in Figure 6

must be removed and reinserted according to their new prior-
ity. We have addressed both context switch elimination and
optimization of the PI step in EMERALDS.

6.2 Implementation in EMERALDS

Going back to Figure 7, we want to eliminate context switch
C2 [39]. We can do this by lettingT1 execute, rather than
switching toT2 immediately following the unblocking event
E. T1 will go on to release the semaphore andT2 can be acti-
vated at this point, savingC2 (Figure 8). This is implemented
as follows. As part of the blocking call just precedingac-
quire sem() , we instrument the code (using a code parser
described later) to add an extra parameter indicating which
semaphoreT2 intends to lock. When eventE occurs andT2
is to be unblocked, the OS checks ifS is available or not.
If S is unavailable, then priority inheritance fromT2 to the
current lock holderT1 occurs right here.T2 is added to the
waiting queue forS and it remains blocked. As a result, the
scheduler picksT1 to execute — which eventually releasesS
— andT2 is unblocked as part of thisrelease sem() call
by T1. Comparing Figure 8 to Figure 6, we see that context
switchC2 is eliminated. The semaphore lock/unlock pair of
operations now incur only one context switch instead of two,
resulting in considerable savings in execution time overhead
(Section 6.4).

We also want to optimize the two PI steps for FP tasks,
each of which takesO(n � r) time with normal queue ma-
nipulation. The first PI step (T1 inheritsT2’s priority) is eas-
ily optimized by using the observation that, according toT1’s
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Figure 8 . The new semaphore implementation scheme.
Context switch C2 is eliminated.

new priority, its position in the FP queue should be just ahead
of T2’s position. So, instead of parsing the FP queue to find
the correct position to insertT1, we insertT1 directly ahead
of T2, reducing overhead toO(1).

We want to reduce the overhead of the second PI step (T1
returns to its original priority) toO(1) as well. In EMER-
ALDS, we accomplish this by switching the positions ofT1
andT2 in the queue as part of the first PI operation whenT1
inheritsT2’s priority. This putsT1 in the correct position ac-
cording to its new priority whileT2 acts as a “place-holder”
keeping track ofT1’s original position in the queue. Then
the question is: is it safe to putT2 in a position lower than
what is dictated by its priority? The answer is yes. As long
asT2 stays blocked, it can be in any position in the queue.T2
unblocks only whenT1 releases the semaphore, and at that
time, we switch the positions ofT1 andT2 again, restoring
each to their original priorities. With this scheme, both PI
operations takeO(1) time.

One complication arises ifT1 first inheritsT2’s priority,
then a third threadT3 attempts to lock this semaphore andT1
inheritsT3’s priority. For this case,T3 becomesT1’s place-
holder andT2 is simply put back to its original position in the
queue. This involves one extra step compared to the simple
case described initially, but the overhead is stillO(1).

Note that these optimizations on the PI operations were
possible because our scheduler implementation keeps both
ready and blocked tasks in the same queue. Had the FP queue
contained only ready tasks, we could not have kept the place-
holder task in the queue.

6.2.1 Code parser

In EMERALDS, all blocking calls take an extra parameter
which is the identifier of the semaphore to be locked by the
upcomingacquire sem() call. This parameter is set to
�1 if the next blocking call is notacquire sem() .

Semaphore identifiers are statically defined (at compile
time) in EMERALDS as is commonly the case in OSs for
small-memory applications, so it is fairly straightforward
to write a parser which examines the application code and
inserts the correct semaphore identifier into the argument
list of blocking calls just precedingacquire sem() calls.
Hence, the application programmer does not have to make
any manual modifications to the code.

6.2.2 Analysis of new scheme

From the viewpoint of schedulability analysis, there can be
two concerns regarding the new semaphore scheme (refer
back to Figure 8):

1. What if threadT2 does not block on the call preceding
acquire sem() ? This can happen if eventE has
already occurred when the call is made.

2. Is it safe to delay execution ofT2 even though it may
have higher priority thanT1 (by doing priority inheri-
tance earlier than would occur otherwise)?

Regarding the first concern, ifT2 does not block on the
call precedingacquire sem() , then a context switch has
already been saved. For such a situation,T2 will continue
to execute until it reachesacquire sem() and a con-
text switch will occur there. What our scheme really pro-
vides is that a context switch will be saved either on the
acquire sem() call or on the preceding blocking call.
Where the savings actually occur at run-time do not really
matter to the calculation of worst-case execution times for
schedulability analysis.

For the second concern, the answer is yes, it is safe to
let T1 execute earlier than it would otherwise. The concern
here is thatT2 may miss its deadline. But this cannot hap-
pen becauseunder all circumstances,T2 must wait forT1 to
release the semaphore beforeT2 can complete. So, from the
schedulability analysis point of view, all that really happens
is that chunks of execution time are swapped betweenT1 and
T2 without affecting the completion time ofT2.

6.3 Applicability of the new scheme

Going back to Figure 8, suppose the lock holderT1 blocks
after eventE, but before releasing the semaphore. With stan-
dard semaphores,T2 will then be able to execute (at least,
until it reachesacquire sem() ), but under our scheme,
T2 stays blocked. This gives rise to the concern that with
this new semaphore scheme,T2 may miss its deadline.

In Figure 8,T1 had priority lower than that ofT2 (call
this caseA). A different problem arises ifT1 has higher pri-
ority thanT2 (call it caseB). Suppose semaphoreS is free
when eventE occurs. Then,T2 will become unblocked and
it will start execution (Figure 9). But beforeT2 can callac-
quire sem() , T1 wakes up, preemptsT2, locksS, then
blocks for some event.T2 resumes, callsacquire sem() ,
and blocks becauseS is unavailable. The context switch
is not saved and no benefit comes out of our semaphore
scheme.

Both of these problems occur when a thread blocks while
holding a semaphore. These problems can be resolved
as follows. First, by making a small modification to our
semaphore scheme, we can change the problem in caseB
to be the same as the problem in caseA. This leaves us with
only one problem to address. By looking at the larger pic-
ture and considering threads other than justT1 andT2, we
can then show that this problem is easily circumvented and
our semaphore scheme works for all blocking situations that
occur in practice, as discussed next.
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Figure 9 . If a higher priority thread T1 preempts T2, locks
the semaphore, and blocks, then T2 incurs the full overhead
of acquire sem() and a context switch is not saved.

6.3.1 Modification to the semaphore scheme

The problem illustrated in Figure 9 necessitates a small mod-
ification to our scheme. We want to somehow blockT2 when
the higher-priority threadT1 locksS, and unblockT2 when
T1 releasesS. This will preventT2 from executing whileS
is locked, which makes this the same as the situation in case
A.

Recall that when eventE occurs (Figure 9), the OS first
checks ifS is available or not, before unblockingT2. Now,
let’s extend the scheme so that the OS addsT2 to a spe-
cial queue associated withS. This queue holds the threads
which have completed their blocking call just precedingac-
quire sem() , but have not yet calledacquire sem() .

ThreadT1 will also get added to this queue as part of
its blocking call just precedingacquire sem() . When
T1 calls acquire sem() , the OS first removesT1 from
this queue, then puts all threads remaining in the queue in a
blocked state. Then, whenT1 calls release sem() , the
OS unblocks all threads in the queue.

With this modification, the only remaining concern (for
both casesA andB) is: if execution ofT2 is delayed like this
while other threads (of possibly lower priority) execute, then
T2 may miss its deadline. This concern is addressed next.

6.3.2 Applicability under various blocking situations

There can be two types of blocking:

� Wait for an internal event, i.e., wait for a signal from
another thread after it reaches a certain point.

� Wait for anexternalevent from the environment. This
event can be periodic or aperiodic.

Blocking for internal events: This case includes waiting
on all events generated directly by some executing threads,
including releasing semaphores and messaging. The typical
scenario for this type of blocking is for threadT1 to enter
an object (and lock semaphoreS) then block waiting for a
signal from another threadTs. Meanwhile,T2 stays blocked
(Figure 10). But it is perfectly safe to delayT2 like this (even
if Ts is lower in priority thanT2) becauseT2 cannot lock
S until T1 releases it, andT1 will not release it until it re-
ceives the signal fromTs. LettingTs execute earlier leads to
T1 releasingS earlier than it would otherwise, which leaves
enough time forT2 to complete by its deadline.
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Figure 10 . Situation when the lock holder T1 blocks for a
signal from another thread Ts.

Blocking for external events:This includes all triggers
not generated by executing code, such as interrupts and ex-
ternal hardware status. External events can be either periodic
or aperiodic. For periodic events, polling is usually used
to interact with the environment and blocking does not oc-
cur. Blocking callsare used to wait for aperiodic events,
but it does not make sense to have such calls inside an ob-
ject. There is always a possibility that an aperiodic event
may not occur for a long time. If a thread blocks waiting
for such an event while inside an object, it may keep that
object locked for a long time, preventing other threads from
making progress. This is why the usual practice is to not
have any semaphores locked when blocking for an aperiodic
event. In short, dealing with external events (whether pe-
riodic or aperiodic) does not affect the applicability of our
semaphore scheme under the commonly-established ways of
handling external events.

6.4 Semaphore scheme performance

Our semaphore scheme eliminates one context switch and
optimizes the priority inheritance mechanism for FP tasks, so
the performance of our scheme depends on whether the rele-
vant tasks are in the DP or FP queue, as well as on the num-
ber of tasks in the queue. Figure 11 shows the semaphore
overheads for tasks in the DP queue as the number of tasks
in the queue are varied from 3 to 30. Since the context switch
overhead is a linear function of the number of tasks in the DP
queue (because of�ts), the acquire/release times increase
linearly with the queue length. But the standard implementa-
tion’s overhead involves two context switches while our new
scheme incurs only one, so the measurements for the stan-
dard scheme have a slope twice that of our new scheme. For
a typical DP queue length of 15, our scheme gives savings
of 11�s over the standard implementation (a 28% improve-
ment), and these savings grow even larger as the DP queue’s
length increases.

For the FP queue, the standard implementation has a lin-
early increasing overhead while with the new implementa-
tion, the overhead is constant (because both priority inheri-
tance and scheduler task selection overhead areO(1) time).
Also, one context switch is eliminated. As a result, the ac-
quire/release overhead stays constant at 29.4�s. For an FP
queue length of 15, this is an improvement of 10.4�s or 26%
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Figure 11 . Worst-case performance measurements for DP
tasks. The overhead for the standard implementation in-
creases twice as rapidly as for the new scheme.

0.0 10.0 20.0 30.0
Number of Threads

20.0

30.0

40.0

50.0

60.0

A
cq

ui
re

 / 
R

el
ea

se
  t

im
es

  (
µs

) Standard implementation
New implementation

Figure 12 . Worst-case performance measurements for FP
tasks. The overhead for the standard implementation in-
creases linearly while new scheme has a constant overhead.

over the standard implementation.
In general, our improved semaphore scheme gives per-

formance improvements of 20–30%, depending on whether
the tasks involved in locking and unlocking the semaphore
are in the DP or FP queue and the length of the queue.

7 State messages for inter-task
communication

The traditional mechanism for exchange of information be-
tween tasks is message-passing using mailboxes. Under this
scheme, one task prepares a message, then invokes a system
call to send that message to a mailbox, from which the mes-
sage can be retrieved by the receiver task. While this scheme
is suitable for certain purposes, it has two major disadvan-
tages.

� Passing one message may take 50–100�s on a proces-
sor such as the Motorola 68040. Since tasks in em-
bedded applications usually need to exchange several
thousand messages per second, this overhead is unac-
ceptable.

� If a task needs to send the same message to multiple
tasks, it must send a separate message to each.

Because of these disadvantages, application designers
are typically forced to use global variables to exchange in-
formation between tasks. This is an unsound software de-
sign practice because reading and writing these variables is
not regulated in any way and can introduce subtle, hard-to-
trace bugs in the software.

Thestate messageparadigm [14] provides the perform-
ance of global variables while avoiding the pitfalls. State
messages use global variables to pass messages between
tasks, but these variables are managed by code generated
automatically by a software tool, not by the application de-
signer. In fact, the application designer does not even know
that global variables are being used: the interface presented
to the programmer is almost the same as the mailbox-based
message-passing interface.

We have implemented state messages in EMERALDS,
optimizing the basic scheme to reduce execution overhead
and memory consumption. EMERALDS includes mailbox
based message passing as well, since state messages are not
meant to replace traditional message-passing, but are meant
as an efficient alternative in a wide range of situations.

7.1 State message semantics

State messages solve the single-writer, multiple-reader com-
munication problem. One can imagine that state message
“mailboxes” are associated with the senders, not with the re-
ceivers: only one task can send a state message to a “mail-
box” (call this thewriter task), but many tasks can read
the “mailbox” (call these thereader tasks). This way, state
message mailboxes behave very differently from traditional
mailboxes, so we will henceforth call themSMmailboxes.
The differences are summarized below.

� SMmailboxes are associated with the writers. Only one
writer may send a message to an SMmailbox, but mul-
tiple readers can receive this message.

� A new message overwrites the previous message.

� Reads do not consume messages, unlike standard mail-
boxes for which each read operationpops one message
off the message queue.

� Both reads and writes are non-blocking. This reduces
the number of context switches suffered by application
tasks.

7.2 Usefulness

In real-time systems, a piece of data such as a sensor reading
is valid only for a certain duration of time, after which a new
reading must be made. Suppose task�1 reads a sensor and
supplies the reading to task�2. If �1 sends two such messages
to �2, then the first message is useless because the second
message has a more recent and up-to-date sensor reading. If
traditional mailboxes with queues are used for communica-
tion, then�2 must first read the old sensor reading before
it can get the new one. Moreover, if multiple tasks need
the same sensor reading,�1 must send a separate message
to each.
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State messages streamline this entire process. An SM-
mailboxSM1will be associated with�1 and it will be known
to all tasks thatSM1 contains the reading of a certain sen-
sor. Every time�1 reads the sensor, it will send that value
to SM1. Tasks which want to receive the sensor value will
perform individual read operations onSM1 to receive the
most up-to-date reading. Even if�1 has sent more than one
message toSM1 between two reads by a task, the reader
task will always get the most recent message without hav-
ing to process any outdated messages. More importantly, if a
reader does two or more reads between two writes by�1, the
reader will get the same message each timewithout block-
ing. This makes perfect sense in real-time systems because
the data being received by the reader is still valid, up-to-date,
and useful for calculations.

The single-writer, multiple-reader situation is quite com-
mon in embedded real-time systems. Any time data is pro-
duced by one task (may it be a sensor reading or some cal-
culated value) and is to be sent to one or more other tasks,
state messages can be used. But in some situations, blocking
read operations are still necessary such as when a task must
wait for an event to occur. Then, traditional message-passing
and/or semaphores must be used. Hence, state messages do
not replace traditional message-passing for all situations, but
they do replace it for most inter-task communication require-
ments in embedded applications.

7.3 Previous work on state messages

Theoretical work on data sharing without synchronization
was first presented by Lamport [16]. State messages were
first used in the MARS OS [14] and have also been imple-
mented in ERCOS [24]. The state message implementation
used in these systems as described in [15] is as follows. The
problem with using global variables for passing messages is
that a reader may read a half-written message since there is
no synchronization between readers and writers. This prob-
lem is solved by using anN -deep circular buffer for each
state message. An associated pointer is used by the writer
to post messages, and used by readers to retrieve the latest
message. With a deep enough buffer, the scheme can guar-
antee that data will not be corrupted while it is being read by
a reader, but a largeN can make state messages infeasible
for our limited-memory target applications.

The solution presented in [15] limitsN by having read-
ers repeat the read operation until they get uncorrupted data.
This saves memory at the cost of increasing the read time
by as much as several hundred microseconds, even under the
assumption that writers and readers run on separate proces-
sors with shared memory. With such an architecture, it is not
possible for a reader to preempt a writer. But we want to
use state messages for communication between readers and
writers on the same CPU without increasing the read over-
heads. For this situation, depending on the relative deadlines
of readers and writers,N may have to be in the hundreds to
ensure correct operation.

Our solution to the problem is to provide OS support for
state messages to reduceN to no more than 5–10 for all pos-
sible cases. In what follows, we describe our implementation

for state messages including the calculation ofN for the case
when both readers and writers are residing on the same CPU.
Then, we describe a system call included in EMERALDS to
support state messages.

7.4 State message implementation

Let B be the maximum number of bytes the CPU can read
or write in one instruction. For most processors,B = 4
bytes. The toolMessageGenproduces customized code for
the implementation of state messages depending on whether
the message lengthL exceedsB or not.

The case forL � B is simple. MessageGenassigns
oneL-byte global variable to the state message and provides
macros through which the writer can write to this variable
and readers can read from it. Note that for this simple case,
it is perfectly safe to use global variables. The only com-
plication possible for a global variable of length< B is to
have one writer accidentally overwrite the value written to
the variable by another writer. But this problem cannot oc-
cur with state messages because, by definition, there is only
one writer.

For the case ofL > B, MessageGenassigns anN -deep
circular buffer to each state message. Each slot in the buffer
is L bytes long. Moreover,each state message has a 1-byte
indexI which is initialized to 0. Readers always read slotI,
the writer always writes to slotI + 1, andI is incremented
only after the write is complete. In this way readers always
get the most recent consistent copy of the message.

Calculating buffer depthN : Now, we address the issue
of how to setN , the depth of the buffer. It is possible that
a reader starts reading sloti of the buffer, is preempted after
reading only part of the message, and resumes only after the
writer has donex number of write operations on this mes-
sage. Then,N must be greater than the largest valuex can
take:

N = max(2; xmax + 1):

Let maxReadTime be the maximum timeanyreader can take
to execute the read operation (including time the reader may
stay preempted). Because all tasks must complete by their
deadlines (ensured by the scheduler), the maximum time any
task can be preempted isd � c, whered is its deadline and
c its execution time. Ifcr is the time to execute the read
operation, then maxReadTime= d� (c � cr):

The largest number of write operations possible during
maxReadTime occur for the situation shown in Figure 13
when the first write occurs as late as possible (just before
the deadline of the writer) and the remaining writes occur
as soon as possible after that (right at the beginning of the
writer’s period). Then,

xmax � 1 =

�
maxReadTime� (Pw � dw)

Pw

�

wherePw anddw are the writer’s period and deadline, re-
spectively. Then,N can be calculated usingxmax.
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time
X X X X X

maxReadTime

dw Pw

Figure 13 . Calculation of xmax. Write operations
are denoted by X. Excluding the first write, there are
b(maxReadTime�(Pw�dw))=Pwc = 4 writes, so xmax = 5.

State messagesMailboxes
send (8 bytes) 2:4�s 16:0�s
receive (8 bytes) 2:0�s 7:6�s
receive slow (8 bytes) 4:4�s —

Table 4 . Overheads for sending and receiving 8-byte mes-
sages.

Slow readers: If it turns out that one or more readers have
long periods/deadlines (call themslow readers) and as a re-
sult,xmax is too large (say, 10 or more) and too much mem-
ory will be needed for the buffer, then EMERALDS provides
a system call which executes the same read operation as de-
scribed above, but disables interrupts so that copying the
message from the buffer becomes an atomic operation. This
call can be used by the slow readers while the faster readers
use the standard read operation. By doing this,N depends
only on the faster readers and memory is saved. The disad-
vantage is that the system call takes longer than the standard
read operation. But this system call is invoked only by slow
readers, so it is invoked infrequently and the extra overhead
per second is negligible. Note that the write operation is un-
changed no matter whether the readers are slow or fast.

7.5 State message performance

Table 4 shows a comparison between the overheads for
state messages and for mailbox-based message-passing on
a 25MHz Motorola 68040. The measurements are for mes-
sage sizes of 8 bytes which are enough to exchange sensor
readings and actuator commands in embedded control appli-
cations.

Most of the overhead for the state message operations
is due to copying the message to and from the SMmailbox,
whereas mailbox-based IPC has many other overheads as
well (allocation/deallocation of kernel data structures, ma-
nipulation of message queues, etc.), which is why state
messages clearly outperform mailboxes for small message
lengths typical in embedded applications. For example, if an
application exchanges 5000 8-byte messages per second (as-
sume 1000 of these are received by tasks with long periods,
i.e., they must usereceive slow ), then mailboxes give
an overhead of 118ms/s or 11.8% whereas using state mes-
sages results in an overhead of only 24ms/s or 2.4%. This
overhead decreases even further if one message has multi-
ple recipients: for mailboxes, a separatesend is needed for
each recipient while only onesend is enough for state mes-
sages.

8 Conclusions

Small-memory embedded applications are not only be-
coming more commonplace (automotive, home electronics,
avionics, etc.), but the complexity of these applications is in-
creasing as well. As a result, embedded applications which
previously managed the hardware resources directly now
need embedded RTOSs to handle the increased complex-
ity of the application. These RTOSs must be efficient and
small in size to be feasible on the slow/cheap processors
used in small-memory applications. Commercial embed-
ded RTOSs rely on optimized code for achieving efficiency,
but in the design of EMERALDS, we took a different ap-
proach. We identified key OS services which are respon-
sible for a large portion of the OS overhead seen by appli-
cations and re-designed these services using new schemes
which exploit certain characteristics common to all embed-
ded applications. In the area of task scheduling, we pre-
sented the CSD scheduler which creates a balance between
static and dynamic scheduling to deliver greater breakdown
utilization through a reduction in scheduling overhead of as
much as 40% compared to EDF and RM. For task synchro-
nization, we presented a new implementation for semaphores
which eliminates one context switch and reduces priority
inheritance overhead to achieve 20–30% improvement in
semaphore lock/unlock times. For message-passing, EMER-
ALDS uses the state-message paradigm which incurs1=4 to
1=5 the overhead of mailbox-based message passing for mes-
sage sizes typical in embedded applications. Unlike previous
schemes for state messages, our scheme bounds the RAM
overhead by providing OS support for state messages. All of
this has been implemented within just 13 Kbytes of code.

EMERALDS has been developed and evaluated primar-
ily on the Motorola 68040 processor. We have also ported
it to the PowerPC 505, the Super Hitachi 2 (SH-2), and the
Motorola 68332 microcontroller, the last two of which are
popular in automotive control applications. EMERALDS is
also being evaluated by the Scientific Research Laboratory of
Ford Motor Company for use in automotive engine control.
They are comparing EMERALDS and various commercial
RTOSs, focusing on basic OS overheads related to interrupt
handling, context switching, event signaling, and timer ser-
vices.

In the future, we plan to focus on networking issues. We
have already investigated fieldbus networking among a small
number (5–10) of nodes [37, 40]. Next, we will investigate
ways to efficiently and cheaply interconnect a large number
(10–100) of clusters of embedded processors. Each cluster
can be a small number of nodes connected by a fieldbus. The
clusters must be interconnected using cheap, off-the-shelf
networks and new protocols must be designed to allow ef-
ficient, real-time communication among the clusters. This
type of networking is needed in aircraft, ships, and facto-
ries to allow various semi-independent embedded controllers
(some of which may be small-memory while others may not
be) to coordinate their activities.
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