
Efficient Microarchitecture Modeling and Path Analysis for Real-Time Software

Yau-Tsun Steven Li
yauli@ee.princeton.edu

Sharad Malik
sharad@ee.princeton.edu

Andrew Wolfe
awolfe@ee.princeton.edu

Department of Electrical Engineering, Princeton University,
Princeton, NJ 08544, USA.

Abstract

Real-time systems are characterized by the presence of timing
constraints in which a task must be completed within a spe-
cific amount of time. This paper examines the problem of de-
termining the bound on the worst case execution time (WCET)
of a given program on a given processor. There are two im-
portant issues in solving this problem: (i) program path anal-
ysis, which determines what sequence of instructions will be
executed in the worst case, and (ii) microarchitecture mod-
eling, which models the hardware system and determines the
WCET of a known sequence of instructions. To obtain a tight
estimate on the bound, both these issues must be addressed
accurately and efficiently. The latter is becoming difficult to
model for modern processors due to the presence of pipelined
instruction execution units and cached memory systems.

Because of the complexity of the problem, all existing
methods that we know of focus only on one of above issues.
This limits the accuracy of the estimated bound and the size of
the program that can be analyzed. We present a more effective
solution that addresses both issues and uses an integer linear
programming formulation to solve the problem. This solution
is implemented in the program cinderella 1 which cur-
rently targets the Intel i960KB processor and we present some
experimental results of using this tool.

1 Introduction

The execution time of a program running on a given sys-
tem may vary significantly according to different input data
values and initial system state. In many cases it is essen-
tial to know the worst case execution time (WCET) of a pro-
gram running on a particular hardware system. This WCET
is useful in many areas. In hard real-time systems, the de-
signer must prove that the WCET satisfies the timing dead-
lines. Many real-time operating systems rely on this infor-
mation for process scheduling. In embedded system designs,
the WCET of the software is often required for deciding how
hardware/software partitioning is done.

The actual WCET of a program cannot be determined un-
less we simulate all possible combinations of input data val-

1In recognition of her hard real-time constraint — she had to be back
home at the stroke of midnight!

ues and initial system states. This is clearly impractical due
to the huge number of simulations required. As a result, we
can only obtain an estimate on the actual WCET by perform-
ing a static analysis of the program. For it to be useful, the
estimated WCET must be tight and conservative such that
it bounds the actual WCET without introducing undue pes-
simism.

The objective of this paper is to examine the problem
of determining the estimated WCET of a given program on
a given hardware system, assuming uninterrupted execution.
There are two components involved in solving this problem.
They are:

1. Program path analysis. This determines what sequence
of instructions will be executed in the worst case sce-
nario. Infeasible program paths should be removed from
the solution search space as much as possible. This can
be done by a data flow analysis of the program, but is
more effective with the help of programmer. Therefore,
the analysis should provide a mechanism for program
path annotations. Another important aspect is that the
number of program paths is typically exponential with
the program size. An efficient path analysis method is
required to avoid exhaustive program path search.

2. Microarchitecture modeling. This models the hard-
ware system and computes the WCET of a given se-
quence of instructions. This is becoming difficult to
model because most modern processors have pipelined
instruction execution units and cached memory systems.
These features, while speeding up the typical perfor-
mance of the system, complicate timing analysis. The
execution time of a single instruction depends on many
factors and varies more than in the previous generation
of microprocessors. The cache memory is particularly
difficult to model accurately. To determine whether or
not the execution of an instruction results in a cache hit,
several previously executed instructions must be exam-
ined. Any incorrect prediction will result in large pes-
simism.

Both components must be studied well and together in or-
der to obtain a tight estimated WCET. We will study program
path analysis in Section 3 and microarchitecture modeling in
Section 4.

2 Related Work

The problem of determining a program’s estimated WCET is
in general undecidable and is equivalent to a halting prob-
lem. Kligerman and Stoyenko [1], as well as Puschner and
Koza [2] have listed the conditions for this problem to be de-
cidable. These conditions are: (i) absence of recursive func-
tion calls, (ii) absence of dynamic structures and (iii) bounded
loops. These restrictions can be imposed either through spe-
cific language constructs or through an external annotation
mechanism. These researchers adopt the first approach. They
develop the languages Real-Time Euclid and MARS-C re-
spectively. The main drawback of this approach is that it
comes with the usual high costs associated with a new pro-
gramming language. Mok et al. [3], and Park and Shaw [4]
choose the latter approach. The loop bounds and other path
information are annotated in a separate file. The analyzing
tool reads the annotated file and the executable code of the
program and then computes the estimated WCET. We believe
this is a better approach, as it does not limit the choice of pro-
gramming language and it requires only minimal additional
programming tools.

Most researchers have recognized that in order to tighten
the estimated WCET, it is necessary to remove some logically
infeasible program paths. While some of them can be auto-
matically inferred from the program using data flow and sym-
bolic analysis techniques, it is widely felt that this is a difficult
task. In contrast, it is relatively less difficult for the program-
mer to provide such information since he/she is familiar with
what the program is supposed to do. The scope of the path in-
formation that the programmer can provide may have a direct
impact on the tightness of the estimated WCET. Initial efforts
[2, 3] to include this information were restricted to provid-
ing loop bounds and maximum execution counts of program
statements. Subsequent work by Park and Shaw accepts path
annotations regarding interactions among program statements
(e.g., two statements are mutually exclusive). They use regu-
lar expressions to represent all feasible program paths. While
this approach is powerful in describing program paths and
can evaluate the worst case program path, it is computation-
ally expensive. As a result, several compromises are made to
limit both the scope of user annotations and the tightness of
the analysis.

Microarchitecture modeling handles the timing analysis
of a known sequence of instructions. It is widely agreed that
this must be done at the assembly level in order to capture
all the effects of compiler optimizations and the microarchi-
tecture implementation. Previously, the modeling was simple
because the execution time of an instruction was largely in-
dependent of others. The researchers normally assumed that
the execution time of an instruction was a constant and was
equal to its worst case execution time throughout the execu-
tion of the program. In modern processors, however, the ex-
ecution time of an instruction depends on its surrounding in-

structions and it varies more than in the previous generations
of processors. Using the above simple model will result in a
very loose estimated WCET. Worse, as the processors become
more complicated, the pessimism due to inaccurate modeling
is becoming a dominant factor and is increasing. This prob-
lem must be overcome before modern processors can be used
efficiently in the real-time community. Much research effort
has been shifted from path analysis to microarchitecture mod-
eling.

The CPU pipeline is considered to be relatively easy to
model because it is only effected by adjacent instructions.
The cache memory system poses a much bigger challenge.
Fetching an instruction may result in a cache miss, causing it
and perhaps some surrounding instructions to be loaded into
the cache line. This action has two effects: (i) subsequent in-
structions are more likely to be found in the cache, and (ii) the
displaced cache contents may later cause cache misses if they
are needed again. Therefore, during the program path analy-
sis stage, if any portion of the instruction sequence is altered,
the cache memory activities of the whole sequence will be af-
fected and a new cache analysis is required. This often leads
to explicit enumeration of program paths. Data cache anal-
ysis is even more difficult because some data addresses may
not be determined statically.

Several WCET analysis with instruction cache modeling
methods have been proposed. Liu and Lee [5] note that a suf-
ficient condition for determining the exact worst case cache
behavior is to search through all feasible program paths ex-
haustively. This becomes an intractable problem whenever
there is a conditional statement inside a while loop, which
unfortunately happens frequently. Lim et al. [6], who ex-
tend Shaw’s timing schema methodology [7] to incorporate
cache analysis, also encounter a similar problem. To deal
with this intractable problem, the above researchers trade off
cache prediction accuracy for computational complexity by
proposing different pessimistic heuristics. Even so, the size
of the program for analysis is still limited. Arnold et al. [8]
propose a less aggressive cache analysis method. They use
flow analysis to identify the potential cache conflicts and clas-
sify each instruction as first miss, always hit, always miss or
first hit categories. This results in fast but less accurate cache
analysis. Rawat [9] handles data cache performance analysis
by using graph-coloring techniques. However, this approach
has limited success even for small programs. A severe draw-
back of all the above methods is that they cannot handle any
user annotations describing infeasible program paths, which
are essential in tightening the estimated WCET.

Explicit path enumeration is not a necessity in obtain-
ing tight estimated WCET. An important observation here
is that the WCET can be computed by methods other than
path enumeration. We propose a method that determines the
worst case execution counts of the instructions and from these
counts, computes the estimated WCET. The main advantage
of this method is that it reduces the solution search space sig-

nificantly. Further, as we will show in Section 4, only min-
imal necessary sequencing information is kept in doing the
cache analysis. No path enumeration is needed. The method
supports user annotations that is at least as powerful as Park’s
Information Description Language (IDL), and at the same
time, computes the cache memory activity that is far more ac-
curate than Lim’s work. To the best of our knowledge, our
research is the first to address both issues together.

3 Program Path Analysis

In this section, we will show how our method handles the
program path analysis problem. Here, we use a simple mi-
croarchitecture model that assumes the execution time of an
instruction to be a constant, i.e., every instruction fetch is as-
sumed to result in a cache miss. This pessimistic assump-
tion will be removed in Section 4 when we introduce a more
sophisticated microarchitecture modeling that includes the
cache analysis.

As stated in the previous section, our method uses the
counting approach to compute the estimated WCET. The
method converts the problem of solving the estimated WCET
into a set of integer linear programming (ILP) problems in
which the estimated WCET, and the worst case execution
counts of the instructions are solved for. There are similarities
between our analysis technique and the one used by Avrunin
et al. [10] in determining time bounds for concurrent systems.
More details will be provided in the following subsections.

3.1 ILP Formulation

Since we assume that each instruction takes a constant time
to execute, the total execution time can be computed by sum-
ming the products of instruction counts by their correspond-
ing instruction execution times. Furthermore, since the in-
structions within a basic block2 are always executed together,
their execution counts are always the same. This allows us to
consider them as a single unit. If we let xi be the execution
count of a basic block Bi, and ci be the execution time of the
basic block, then given that there are N basic blocks in the
program, the total execution time of the program is given as:

Total execution time =
N

∑
i

cixi. (1)

The possible values of xi’s are constrained by the program
structure and the possible values of the program variables. If
we can represent these constraints as linear inequalities, then
the problem of finding the estimated WCET of a program
is reduced to an integer linear programming (ILP) problem
which can be solved by many existing ILP solvers.

2A basic block is a maximum sequence of consecutive instructions in
which flow of control enters at the beginning and leaves at the end without
halt or possibility of branching except at the end.

/* k >= 0 */
s = k;
while (k < 10) {

if (ok)
j++;

else {
j = 0;
ok = true;

}
k++;

}
r = j;

B1 s = k;

d3

d6

d10

d5

d8

d7

d4

x1

d2

d1

x2 B2 while(k<10)

B7 r = j;x7

d9

B3 if(ok)x3

B4 j++;x4

B6 k++;x6

B5 j = 0;
ok=true;

x5

(i) Code (ii) CFG

Figure 1: An example code fragment showing how the struc-
tural and functionality constraints are constructed.

The linear constraints are divided into two parts: (i) pro-
gram structural constraints, which are derived automati-
cally from the program’s control flow graph (CFG), and (ii)
program functionality constraints, which are provided by
the user to specify loop bounds and other path information
or extracted from the program semantics. The construction
of these constraints is best illustrated by an example shown
in Fig. 1, in which a conditional statement is nested inside a
while loop. Fig. 1(ii) shows the CFG. Each node in the CFG
represents a basic block Bi. A basic block execution count,
xi, is associated with each node. Each edge in the CFG is la-
beled with a variable di which serves both as a label for that
edge and as a count of the the number of times that the pro-
gram control passes through that edge. Analysis of the CFG
is equivalent to a standard network-flow problem. Structural
constraints can be derived from the CFG from the fact that,
for each node Bi, its execution count is equal to the number
of times that the control enters the node (inflow), and is also
equal to the number of times that the control exits the node
(outflow). The structural constraints of this example are:

d1 = 1 (2)

x1 = d1 = d2 (3)

x2 = d2 + d8 = d3 + d9 (4)

x3 = d3 = d4 + d5 (5)

x4 = d4 = d6 (6)

x5 = d5 = d7 (7)

x6 = d6 + d7 = d8 (8)

x7 = d9 = d10. (9)

The first constraint (2) is needed to specify that the code frag-
ment is executed once.

The structural constraints do not provide any loop bound

information. This information can be provided by the user as
a functionality constraint. In this example, we note that since
k is positive before it enters the loop, the loop body will be
executed between 0 and 10 times each time the loop is en-
tered. The constraints to specify this information are:

0x1 ≤ x3 ≤ 10x1, (10)

The functionality constraints can also be used to specify other
path information. For example, we observe that the else
statement (B5) can be executed at most once inside the loop.
This information can be specified as:

x5 ≤ 1x1. (11)

More complicated path information can also be specified. For
instance, the user may know that if the else statement is ex-
ecuted, then the loop will be executed exactly 5 times. The
constraint to represent this information is:

(x5 = 0) j (x5 ≥ 1 & x3 = 5x1) (12)

Here, the symbols ‘&’ and ‘j’ represent conjunction and dis-
junction respectively. This constraint is not a linear constraint
by itself, but a disjunction of linear constraints sets. This can
be viewed as a set of constraint sets, where at least one con-
straint set member must be satisfied. We have been able to
show that all language constructs in Park’s IDL can be trans-
formed into sets of linear constraints. As a result, using the
linear constraints is at least as descriptive as using IDL.

3.2 Solving the Constraints

Because of the ‘&’ and ‘j’ operators, the program function-
ality constraints may, in general, be a disjunction of conjunc-
tive constraint sets. To solve the estimated WCET, each set of
the functionality constraint sets is combined (the conjunction
taken) with the set of structural constraints. The combined set
is passed to the ILP solver with (1) to be maximized. The ILP
solver returns the maximum value of the expression, as well
as the basic block counts. The above procedure is repeated
for every functionality constraint set. The maximum over all
these running times is the estimated WCET.

The total time required to solve the estimated WCET de-
pends on the number of functionality constraint sets and the
time to solve each constraint set. Although the number of
functionality constraint sets double every time a functional-
ity constraint with disjunction operator ‘j’ is added, we found
the size to be small for all the experiments we did as reported
in Section 6. The second issue is the complexity of solving
each ILP problem, which is, in general, an NP-hard problem.
We are able to demonstrate that if we restrict our functionality
constraints to those that correspond to the constructs in IDL,
then the ILP problem collapses to a network flow problem,
which can be solved in polynomial time. Our experiments
show that the time to solve the estimated WCET is negligible.

����@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��yy
��
��
����@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��yy
����@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��yy

B1

B2

B3

Cache Line

0

��1��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��@@��ÀÀ��yy2��3

��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
yy
yy

Cache line

0

1

2

3

B1

B1

B1 B3

B3

B2

B2

Basic Block

B1.1

B1.2

B1.3 B2.1

B2.2

B3.1

B3.2

(i) CFG (ii) Cache table

Figure 2: An example showing how the l-blocks are con-
structed. Each rectangle in the cache table represents a l-
block.

4 Microarchitecture Modeling

Our goal is to model the CPU pipeline and the cache memory
systems and find out the execution times (ci’s) of the basic
blocks. In this paper, we will limit our method to model a
direct-mapped instruction cache. However, it can be extended
to handle set associative instruction cache memory.

4.1 Direct-mapped Instruction Cache Analysis

To incorporate cache memory analysis into our ILP model
shown in the previous section, we will need to modify the
cost function (1) and add a list of linear constraints, denoted
as cache constraints, representing the cache memory behav-
ior. These will be described in the following subsections.

4.1.1 Modified Cost Function

With cache memory, the execution time of an instruction will
be different depending on whether it results in a cache hit or
cache miss. Thus, we need to subdivide the original instruc-
tion counts into counts of cache hits and misses. If we can
determine these counts, and the hit and miss execution times
of each instruction, then a tighter bound on the execution time
of the program can be established. As in the previous section,
we can group adjacent instructions together. We define a new
type of atomic structure for analysis, the line-block or simply
l-block. A l-block is defined as a contiguous sequence of in-
structions within the same basic block that are mapped to the
same line in the instruction cache. All instructions within an
l-block will always have the same cache hit/miss counts, and
the same total execution counts.

Fig. 2(i) shows a CFG with 3 basic blocks. Suppose that
the instruction cache has 4 lines. Since the starting address of
each basic block can be determined from the program’s exe-
cutable code, we can find all the cache lines that instructions
within it map to, and add an entry on these cache lines in
the cache table (Fig. 2(ii)). The boundary of each l-block is
shown by the solid line rectangle. Suppose a basic block Bi is
partitioned into ni l-blocks. We denote these l-blocks as Bi.1,
Bi.2, . . . , Bi.ni .

For any two l-blocks that map to the same cache line, they
conflict with each other if the execution of one l-block will
displace the cache content of the other. Otherwise, they are
called non-conflicting l-blocks (e.g. B1.3 and B2.1 in Fig. 2).

Since l-block Bi. j is inside the basic block Bi, its execution
count is equal to xi. The cache hit and the cache miss counts
of l-block Bi. j are denoted as xhit

i. j and xmiss
i. j respectively, and

xi = xhit
i. j + xmiss

i. j , 1 ≤ j ≤ ni (13)

The new total execution time (cost function) is given by:

Total execution time =
N

∑
i

ni

∑
j

(chit
i. j x

hit
i. j + cmiss

i. j xmiss
i. j). (14)

where chit
i. j and cmiss

i. j are the hit cost and the miss cost of the
l-block Bi. j respectively.

Equation (13) links the new cost function (14) with the
program structural constraints and the program functionality
constraints, which remain unchanged. In addition, the cache
behavior can now be specified in terms of the new variables
xhit

i. j ’s and xmiss
i. j ’s.

4.1.2 Cache Constraints

These constraints are used to constrain the hit/miss counts of
the l-blocks. Consider a simple case. For each cache line, if
there is only one l-block Bk.l mapping to it, then once Bk.l is
loaded into the cache it will permanently stay there. In other
words, only the first execution of this l-block may cause a
cache miss and all subsequent executions will result in cache
hits. Thus,

xmiss
k.l ≤ 1. (15)

A slightly more complicated case occurs when two or
more non-conflicting l-blocks map to the same cache line,
such as B1.3 and B2.1 in Fig. 2. The execution of any of them
will load all the l-blocks into the cache line. Therefore, the
sum of their cache miss counts is at most one. In this exam-
ple, the constraint is:

xmiss
1.3 + xmiss

2.1 ≤ 1. (16)

When a cache line contains two or more conflicting l-
blocks, the hit/miss counts of all the l-blocks mapped to this
line will be affected by the sequence in which these l-blocks
are executed. An important observation is that the execution
of any other l-blocks from other cache lines will have no ef-
fect on these counts. This leads us to examine the control flow
of the l-blocks mapped to that particular cache line by defin-
ing a cache conflict graph.

4.1.3 Cache Conflict Graph

A cache conflict graph (CCG) is constructed for every cache
line containing two or more conflicting l-blocks. It contains a

Bm.nBk.l

s

e

p(s,m.n)

p(s,e)

p(s,k.l)

p(k.l,e)

p(k.l,m.n)

p(m.n,k.l)

p(k.l,k.l) p(m.n,m.n)

p(m.n,e)

Figure 3: A general cache conflict graph containing two con-
flicting l-blocks.

start node ‘s’, an end node ‘e’, and a node ‘Bk.l’ for every l-
block Bk.l mapped to the same cache line. The start node rep-
resents the start of the program, and the end node represents
the end of the program. For every node ‘Bk.l’, a directed edge
is drawn from node Bk.l to node Bm.n if there exists a path in
the CFG from basic block Bk to basic block Bm without pass-
ing through the basic blocks of any other l-blocks of the same
cache line. If there is a path from the start of the CFG to ba-
sic block Bk without going through the basic blocks of any
other l-blocks of the same cache line, then a directed edge is
drawn from the start node to node Bk.l . The edges between
nodes and the end node are constructed analogously. Sup-
pose that a cache line contains only two conflicting l-blocks
Bk.l and Bm.n. A possible CCG is shown in Fig. 3. The pro-
gram control begins at the start node. After executing some
other l-blocks from other cache lines, it will eventually reach
any one of node Bk.l , node Bm.n or the end node. Similarly, af-
ter executing Bk.l , the control may pass through some l-blocks
from other cache lines and then reach to node Bk.l again or it
may reach node Bm.n or the end node.

For each edge from node Bi. j to node Bu.v, we assign a
variable p(i. j,u.v) to count the number of times that the con-
trol passes through that edge. At each node Bi. j, the sum of
control flow going into the node must be equal to the sum of
control flow leaving the node, and it must also be equal to the
execution count of l-block Bi. j. Therefore, two constraints are
constructed at each node Bi. j:

xi = ∑
u.v

p(u.v,i. j) = ∑
u.v

p(i. j,u.v), (17)

where ‘u.v’ may also include the start node ‘s’ and the end
node ‘e’. This set of constraints is linked to the program
structural and functionality constraints via the x-variables.

The program is executed once, so at start node:

∑
u.v

p(s,u.v) = 1. (18)

The variable p(i. j,i. j) represents the number of times that
the control flows into l-block Bi. j after executing l-block Bi. j

without entering any other l-blocks of the same cache line in
between. Therefore, the contents of l-block Bi. j are still in
the cache every time the control follows the edge (Bi. j,Bi. j)
to reach node Bi. j, and it will result in a cache hit. Thus, there
will be at least p(i. j,i. j) cache hits for l-block Bi. j. In addition,
if both edges (Bi. j,e) and (s,Bi. j) exist, then the contents of
Bi. j may already be in cache at the beginning of program exe-
cution as its content may be left by the previous program ex-
ecution. Thus, variable p(s,i. j) may also be counted as a cache
hit. Hence,

p(i. j,i. j) ≤ xhit
i. j ≤ p(s,i. j) + p(i. j,i. j). (19)

Otherwise, if any of edges (s,Bi. j) and (Bi. j,e) does not exist,
then

xhit
i. j = p(i. j,i. j). (20)

Equations (15) through (20) are the possible cache con-
straints for bounding the cache hit/miss counts. These con-
straints, together with (13), the structural constraints and the
functionality constraints, are passed to the ILP solver with
the goal of maximizing the cost function (14). Because of
the cache information, a tighter estimated WCET will be
returned. Further, some path sequencing information can
be expressed in terms of p-variables as extra functionality
constraints. The CCGs are network flow graphs and thus
the cache constraints are typically solved rapidly by the ILP
solver. In the worst case, there is one CCG for each cache
line.

The above constraints can also be used to solve best case
execution time. In this case the ILP solver will try to increase
the value of xhit

i. j as much as possible. If p(i. j,i. j) (self-edge

variable) exists, then the ILP solver may set p(i. j,i. j) = xhit
i. j = xi.

However, this is not possible in any execution trace. Before
this path can occur, control must first flow into node Bi. j from
some other node. To handle this problem, an additional con-
straint is required for all nodes Bi. j with a self-edge:

xi ≤ Z ∑
u.v, u.v 6=i. j

p(u.v,i. j), (21)

where Z is a large positive integer constant. The addition of
this kind of constraints may generate some non-integral opti-
mal variable values when the whole constraint set is passed to
LP solver. If the ILP solver uses branch and bound techniques
for solving the ILP problem, the computational time may be
lengthened significantly.

4.1.4 Bounds on p-variables

In this subsection, we discuss bounds on the p-variables.
Without the correct bounds, the solver may return an infeasi-
ble l-block count and an overly pessimistic estimated WCET.
This is demonstrated by the example in Fig. 4. In this exam-
ple, the CFG contains two nested loops. Suppose that there

B1

B2

B3

B5

B6

B8

B9

B7

B4
B4.1

B7.1

1 x1

11 x2

10 x3

10 x8

1 x9

1 x5

11 x6
9 x4

10
x7

(i) CFG

B7.1B4.1

s

e

1 p(s,7.1)

0 p(s,e)

0 p(s,4.1)

0 p(4.1,e)

9 p(4.1,7.1)

9 p(7.1,4.1)

p(4.1,4.1)
0 p(7.1,7.1)

1 p(7.1,e)

0

9 10

(ii) CCG

Figure 4: An example showing two conflicting l-blocks (B4.1
and B7.1) from two different loops. The italicized numbers
shown on the left of the variables are the pessimistic worst
case solution returned from ILP solver.

are two conflicting l-blocks B4.1 and B7.1. A CCG will be con-
structed (Fig. 4(ii)) and the following cache constraints will
be generated:

x4 = p(s,4.1) + p(4.1,4.1) + p(7.1,4.1)

= p(4.1,e) + p(4.1,4.1) + p(4.1,7.1) (22)

x7 = p(s,7.1) + p(7.1,7.1) + p(4.1,7.1)

= p(7.1,e) + p(7.1,7.1) + p(7.1,4.1) (23)

p(s,4.1) + p(s,7.1) + p(s,e) = 1 (24)

p(4.1,4.1) ≤ xhit
4 ≤ p(s,4.1) + p(4.1,4.1) (25)

p(7.1,7.1) ≤ xhit
7 ≤ p(s,7.1) + p(7.1,7.1). (26)

Suppose that the user specifies that both loops will be exe-
cuted 10 times each time they are entered and that basic block
B4 will be executed 9 times each time the outer loop is en-
tered. The functionality constraints for this information are:

x3 = 10x1, x7 = 10x5, x4 = 9x1. (27–29)

If we feed the above constraints and the structural con-
straints into the ILP solver, it will return a worst case solution

in which the counts are as shown on the left of the variables
in the figure.

From the CCG, we observe that these p-values imply that
l-blocks B4.1 and B7.1 will be executed alternately, with l-
block B7.1 being executed first. This execution sequence will
generate the maximum number of cache misses and hence the
WCET. However, if we look at the CFG, we know that this
sequence is impossible because the inner loop will be entered
only once. Once the program control enters the inner loop,
l-block B7.1 must be executed 10 times before control exits
the inner loop. Hence, there must be at least 9 cache hits
for l-block B7.1. The ILP solver over-estimates the number of
cache misses based on the given constraints. Upon closer in-
vestigation, we find that the correct solution also satisfies the
above set of constraints. This implies that some constraints
for tightening the solution space are missing.

The reason for producing such pessimistic worst case so-
lution is that the p-variables are not properly bounded. When
we assign the p-variables to the edges of the CCG, we do not
specify any upper limits on these p-variables. However, the
flow equations (17) place a bound on them. For any variable
p(i. j,u.v), its bounds are:

0 ≤ p(i. j,u.v) ≤ min(xi,xu). (30)

Consider the case that two conflicting l-blocks Bi. j and
Bu.v are in the same loop and at the same loop nesting level.
In this case the maximum control flow allowed between these
two l-blocks is equal to the total number of loop iterations.
This will be the upper bound on p(i. j,u.v). Since l-blocks Bi. j

and Bu.v are inside the loop, xi and xu can at most be equal to
the total number of loop iterations. Therefore, (17) will bound
p(i. j,u.v) correctly.

Suppose that there are two nested loops such that l-block
Bi. j is in the outer loop while Bu.v is in the inner loop. If edge
(Bi. j,Bu.v) exists, all paths represented by this edge go from
basic block Bi to basic block Bu in the CFG. They must pass
through the loop preheader3, say basic block Bh, of the inner
loop. Since the execution count of basic block Bh, xh, may be
smaller than xi and xu, a constraint

p(i. j,u.v) ≤ xh (31)

is needed to properly bound p(i. j,u.v).
In general, a constraint is constructed at each loop pre-

header. All the paths that go from outside the loop to inside
the loop must pass through the loop preheader. Therefore, the
sum of these flows can at most be equal to the execution count
of the loop preheader. In our example, a constraint at loop
preheader B5 is needed:

p(s,7.1) + p(4.1,7.1) ≤ x5. (32)

3A loop preheader is the basic block just before entering the loop. For
instance, in the example shown in Fig. 4, basic block B1 is the loop preheader
of the outer loop and basic block B5 is the loop preheader of the inner loop.

With this constraint, the ILP solver will generate a correct so-
lution.

4.2 Interprocedural Calls

A function may be called many times from different locations
of the program. The variable xi represents the total execution
count of the basic block Bi when the whole program is ex-
ecuted once. Similarly, xhit

i. j and xmiss
i. j represents the total hit

and miss counts of the l-block Bi. j respectively. Equation (13)
is still valid and (14) still represents the total execution time
of the program.

Every function call is treated as if it is inlined. During the
construction of CFG, a function call is represented by an f -
edge pointing to an instance of the callee function’s CFG. The
edge has a variable fk which represents the number of times
that the particular instance of the callee function is called.
Each variable and name in the callee function has a suffix
“. fk” to distinguish it from other instances of the same callee
function.

Consider the example shown in Fig. 5. Here, function
inc is called twice in the main function. The CFG is shown
in Fig. 5(ii). The structural constraints are:

d1 = 1 (33)

x1 = d1 = f1 (34)

x2 = f1 = f2 (35)

d2. f1 = f1 (36)

x3. f1 = d2. f1 = d3. f1 (37)

d2. f2 = f2 (38)

x3. f2 = d2. f2 = d3. f2 (39)

x3 = x3. f1 + x3. f2 (40)

The last equation above links the total execution counts of ba-
sic block B3 with its counts from two instances of the func-
tion. Based on these variables, the user can provide specific
information on different instances of the same function.

The CCG is constructed as before by treating each in-
stance of l-block Bi. j. fk as different from other instances of
the same l-block. In the example, if l-block B1.1 conflicts with
l-block B3.1, then since l-block B3.1 has two instances (B3.1. f1
and B3.1. f2), there will be 5 nodes in the CCG (Fig. 5(iii)).

The cache constraints and the bounds on p variables are
constructed as before, except the hit constraints are modified
slightly. In addition to the self edges, the edge going from
one instance of a l-block (say Bi. j. fk) to another instance of
the same l-block (Bi. j. fl) are counted as the cache hit of the
l-block Bi. j, as it represents the execution of l-block Bi. j at fl
after the same l-block has just been executed at fk. The com-
plete cache constraints derived from the example’s CCG are:

x1 = xhit
1.1 + xmiss

1.1 (41)

x2 = xhit
2.1 + xmiss

2.1 (42)

void main()
{

B1 inc(&i);
B2 inc(&j);

}

void inc(int *pi)
{

B3 *pi++;
}

B1

B2

x1

x3.f1d1

f1

B3.f1

f2

x2

B3.1.f1

B1.1

d2.f1

d3.f1

x3.f2 B3.f2 B3.1.f2

d2.f2

d3.f2

s

e

B3.1.f2B3.1.f1B1.1
p(1.1,3.1.f1)

p(3.1.f1,3.1.f2)

p(3.1.f2,e)

p(s,1.1)

(i) Code fragment (ii) CFG with two instances of function inc (iii) CCG

Figure 5: An example code fragment showing how function calls are handled.

x3 = xhit
3.1 + xmiss

3.1 (43)

xmiss
2.1 ≤ 1 (44)

x1 = p(s,1.1) = p(1.1,3.1. f1) (45)

x3. f1 = p(1.1,3.1. f1) = p(3.1. f1,3.1. f2) (46)

x3. f2 = p(3.1. f1,3.1. f2) = p(3.1. f2,e) (47)

p(s,1.1) = 1 (48)

xhit
1.1 = 0 (49)

xhit
3.1 = p(3.1. f1,3.1. f2). (50)

4.3 CPU Pipeline

Since chit
i. j ’s and cmiss

i. j ’s must be constants, we assume that
the time required to execute a sequence of instructions in the
CPU pipeline is always a constant throughout the execution
of the program. The hit cost chit

i. j of a l-block Bi. j is deter-
mined by adding up the effective execution times of the in-
structions in the l-block. Since the effective execution times
of some instructions, especially the the floating point instruc-
tions, are data dependent, a conservative approach is taken by
assuming the worst case effective execution time. This may
induce some pessimism in the final estimated WCET. Addi-
tional time is also added to the last l-block of each basic block
so as to ensure that all the buffered load/store instructions
are completed when the control reaches the end of the basic
block. The miss cost cmiss

i. j of the l-block is equal to the time
needed to load the instructions of the l-block into the cache
memory and to execute them in the CPU.

5 Implementation

The above cache analysis method has been implemented in
a tool called cinderella4, which estimates the WCET
of programs running on an Intel QT960 development board
[11] containing an 20MHz Intel i960KB processor, 128KB of

4Details of this tool can be obtained via Cinderella WWW home page
(http://www.princeton.edu/˜yauli/cinderella/).

main memory and several I/O peripherals. The i960KB pro-
cessor is a 32bit RISC processor used in many embedded sys-
tems (e.g. in laser printers). It contains an on-chip 512 byte
direct-mapped instruction cache which is organized as 32 �
16-byte lines. It also features a floating point unit, a 4-stage
instruction pipeline, and 4 register windows for faster execu-
tion of function call instructions [12, 13].

Cinderella contains about 15,000 lines of C++ code.
The tool reads the subject program’s executable code and con-
structs the CFGs and the CCGs. It then outputs the anno-
tation files in which the x’s and f ’s are labeled along with
the program’s source code. The user is then asked to pro-
vide loop bounds. An estimated WCET can thus be com-
puted. The user can provide additional path information, if
available, to tighten this bound. We use a public domain
ILP solver lp solve5 to solve the constraints generated by
cinderella. The solver uses the branch and bound proce-
dure to solve the ILP problem.

An optimization implemented in cinderella actually
reduces the number of variables and CCGs. If two or more
cache lines can hold instructions from the same set of basic
blocks, e.g. cache lines 0 and 1 in Fig. 2(ii), then the cor-
responding l-blocks can be combined and only one CCG is
constructed for these cache lines. This technique is used in
cinderella to improve efficiency.

6 Experimental Results

Our goal is to find a tight bound on a program’s WCET. A
small amount of pessimism is normally present in the esti-
mated bound. This is due to two factors: (i) insufficient path
information from the user so that some infeasible program
paths are considered, and (ii) inaccuracy in microarchitecture
modeling which affects the accuracy of the values of chit

i. j ’s and
cmiss

i. j ’s in (14). The first factor can be reduced by providing
more path information and the second can be reduced by a
more sophisticated hardware model.

5lp solve is written by Michel Berkelaar and can be retrieved at
ftp://ftp.es.ele.tue.nl/pub/lp solve.

Table 1: Set of Benchmark Examples, their descriptions,
source file line size and the binary executable code size.

Function Description Lines Bytes
check data Example from Park’s thesis [4] 23 88
piksrt Insertion Sort 19 104
sort Bubble sort from [8] 41 152
matcnt Summation of 2 matrices, from [8] 85 460
matcnt2 Matcnt with inlined functions 73 400
stats Calculate the sum, mean and variance

of two arrays, from [8]
100 656

fft Fast Fourier Transform 57 500
jpeg fdct islow JPEG forward discrete cos transform 300 996
line Line drawing routine from Gupta [14] 165 1,556
circle Circle drawing routine from Gupta 100 1,588
des Data Encryption Standard 192 1,852
whetstone Whetstone benchmark 196 2,760
dhry Dhrystone benchmark 761 1,360

In this section, we would like evaluate the accuracy of our
cache analysis method as well as examine its performance
issues. Since there are no standard benchmark programs,
we have selected the benchmark programs from a variety of
sources. They include programs from academic sources, DSP
applications, and other standard software benchmarks. Ta-
ble 1 shows the program names, brief descriptions, the size
of the source code in number of lines and the binary code size
of the program in number of bytes.

Since it is impractical to simulate all the possible program
input data and all initial system states, a program’s actual
WCET cannot be computed. Instead, we try to identify the
worst case data set by a careful study of the program and use
the logic analyzer to measure the program’s execution time
for this worst case data set. We denote this time as the pro-
gram’s measured WCET. A program’s measured WCET is al-
ways bounded by its actual WCET and we assume that it is
very close to the actual WCET.

Table 2 shows the results of our experiments. The sec-
ond and third columns show the measured WCET and the
estimated WCET with cache analysis. For comparison, we
also estimate WCET without performing the cache analysis.
This is shown in the last column. Clearly the WCET bound
with cache analysis is much tighter than the one without it.
For small programs (e.g. check data and piksrt), the
estimated WCETs are very close to their corresponding mea-
sured WCETs. For larger programs, the differences are larger.
We found that this discrepancy is mainly due to two factors.
The first is that we assume that the register window over-
flows (underflows) on each function call (return). This pes-
simism incurs about 50 clock cycles on each function call and
function return. This can be illustrated in examples matcnt
and matcnt2. Matcnt has two small functions which are
called frequently inside the loops. These function calls gen-
erate a large amount of pessimism. In matcnt2, these two
functions are inlined and the estimated WCET is tightened
significantly. We are currently working on this area to reduce
the pessimism. The second factor is due to the pessimism in

Table 2: Estimated WCETs of Benchmark programs. All val-
ues are in units of clock cycles.

Function Measured Estimated WCET Estimated WCET
WCET with cache analysis w/o cache analysis

check data 4.30�102 4.91�102 11.9�102

piksrt 1.71�103 1.74�103 5.86�103

sort 9.99�106 27.8�106 50.2�106

matcnt 2.20�106 5.46�106 8.17�106

matcnt2 1.86�106 2.11�106 4.46�106

stats 1.16�106 2.21�106 2.95�106

fft 2.20�106 2.63�106 3.97�106

jpeg fdct islow 9.05�103 9.11�103 16.7�103

line 4.84�103 6.09�103 9.15�103

circle 1.45�104 1.54�104 1.59�104

des 2.44�105 3.70�105 6.72�105

whetstone 6.94�106 10.5�106 14.9�106

dhry 5.76�105 7.57�105 13.3�105

the execution times of floating point instructions. The execu-
tion time of a floating point instruction depends on the values
of its arguments and its worst case execution time are typi-
cally 30%–40% more than its average execution time.

The structural constraints and the cache constraints are de-
rived from the CFG and the CCGs which are very similar to
network flow graphs. We therefore expect that the ILP solver
can solve the problem efficiently. Table 3 shows, for each pro-
gram, the number of variables and constraints, the number of
branches in solving the ILP problem, and the CPU time re-
quired to solve the problem. Since each program may have
more than one set of functionality constraints, a ‘+’ symbol
is used to separate the number of functionality constraints in
each set. For a program having n sets of functionality con-
straints, the ILP will be called n times. The ‘+’ symbol is
once again used to separate the number of ILP branches and
the CPU time for each ILP call.

We found that even with thousands of variables and con-
straints, the branch and bound ILP solver can still find an in-
teger solution within the first few calls to the linear program-
ming solver. The time taken to solve the problem ranges from
less than a second to a few minutes on a SGI Indigo2 work-
station. With a commercial ILP solver CPLEX, the CPU time
reduces significantly to a few seconds.

In order to evaluate how the cache size will effect the time
needed for solving the problem, we double the number of
cache lines (and hence the cache size) from 32 lines to 64
lines and find the CPU time needed to solve the problems. Ta-
ble 4 shows the results. From the table, we find that the num-
ber of variables and the number of constraints change little
when the number of cache lines is doubled. The solution time
is of the same order as before. The primary reason is that al-
though increasing the number of cache lines will increase the
number of CCGs and hence more cache constraints are gener-
ated, each CCG has fewer nodes and edges. As a result, there
are fewer cache constraints in each CCG. These two factors
roughly cancel out each other.

Table 3: Performance issues in cache analysis.
Function No. of Variables No. of Constraints ILP Time

d’s f ’s p’s x’s Struct. Cache Funct. branches (sec.)
check data 12 0 0 40 25 21 5+5 1+1 0+0
piksrt 12 0 0 42 22 26 4 1 0
sort 15 1 0 58 35 31 6 1 0
matcnt 20 4 0 106 59 61 4 1 0
matcnt2 20 2 0 92 49 54 4 1 0
stats 28 13 75 180 99 203 4 1 0
fft 27 0 0 80 46 46 11 1 0
jpeg fdct islow 8 0 18 34 16 49 2 1 0
line 31 2 264 231 73 450 2 1 3
circle 8 1 81 100 24 186 1 1 0
des 174 11 728 560 342 1,059 16+16 13+13 171+197
whetstone 52 3 301 388 108 739 14 1 2
dhry 102 21 503 504 289 777 24�4+26�4 1�8 0�3+2+0+1�2+4

Table 4: The complexity of the ILP problem when the number
of cache lines is doubled to 64 lines.

Function No. of variables No. of constraints ILP Time
d’s f ’s p’s x’s Struct. Cache Funct. branches (sec.)

des 174 11 809 524 342 1,013 16+16 7+10 90+145
whetstone 52 3 232 306 108 559 14 1 1

7 Conclusions and Future Work

In this paper, we present a method to determine a tight bound
on a program’s worst case execution time. The method in-
cludes a direct-mapped instruction cache analysis and uses an
integer linear programming formulation to solve the problem.
This approach avoids enumeration of program paths. Further-
more, it allows the user to provide program path annotations
so that a tighter bound may be obtained. The method is im-
plemented in the tool cinderella and the experimental re-
sults show that the WCET bound is much closer to the mea-
sured WCET than if cache analysis is not included. Since the
linear constraints are mostly derived from the network flow
graphs, the ILP problems are typically solved efficiently.

We are now working on set-associative instruction cache
and data cache memory modeling, as well as the register win-
dow modeling.

References

[1] Eugene Kligerman and Alexander D. Stoyenko, “Real-time
Euclid: A language for reliable real-time systems”, IEEE
Transactions on Software Engineering, vol. SE-12, no. 9, pp.
941–949, September 1986.

[2] P. Puschner and Ch. Koza, “Calculating the maximum execu-
tion time of real-time programs”, The Journal of Real-Time
Systems, vol. 1, no. 2, pp. 160–176, September 1989.

[3] Aloysius K. Mok, Prasanna Amerasinghe, Moyer Chen, and
Kamtron Tantisirivat, “Evaluating tight execution time bounds
of programs by annotations”, in Proceedings of the 6th IEEE
Workshop on Real-Time Operating Systems and Software, May
1989, pp. 74–80.

[4] Chang Yun Park, Predicting Deterministic Execution Times of
Real-Time Programs, PhD thesis, University of Washington,
Seattle 98195, August 1992.

[5] Jyh-Charn Liu and Hung-Ju Lee, “Deterministic upperbounds
of the worst-case execution times of cached programs”, in Pro-
ceedings of the 15th IEEE Real-Time Systems Symposium, De-
cember 1994, pp. 182–191.

[6] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do
Rhee, Sang Lyul Min, Chang Yun Park, Heonshik Shin, Kun-
soo Park, and Chong Sang Kim, “An accurate worst case tim-
ing analysis technique for RISC processors”, in Proceedings of
the 15th IEEE Real-Time Systems Symposium, December 1994,
pp. 97–108.

[7] Alan C. Shaw, “Reasoning about time in higher-level language
software”, IEEE Transactions on Software Engineering, vol.
15, no. 7, pp. 875–889, July 1989.

[8] Robert Arnold, Frank Mueller, David Whalley, and Marion
Harmon, “Bounding worst-case instruction cache perfor-
mance”, in Proceedings of the 15th IEEE Real-Time Systems
Symposium, December 1994, pp. 172–181.

[9] Jai Rawat, “Static analysis of cache performance for real-time
programming”, Master’s thesis, Iowa State University of Sci-
ence and Technology, November 1993, TR93-19.

[10] George S. Avrunin, James C. Corbett, Laura K. Dillon, and
Jack C. Wileden, “Automated derivation of time bounds in
uniprocessor concurrent systems”, IEEE Transactions on Soft-
ware Engineering, vol. 20, no. 9, pp. 708–719, September
1994.

[11] Intel Corporation, QT960 User Manual, 1990, Order Number
270875-001.

[12] Intel Corporation, i960KA/KB Microprocessor Programmers’s
Reference Manual, 1991, ISBN 1-55512-137-3.

[13] Glenford J. Myers and David L. Budde, The 80960 Micropro-
cessor Architecture, John Wiley & Sons, Inc., 1988, ISBN
0-471-61857-8.

[14] Rajesh Kumar Gupta, Co-Synthesis of Hardware and Software
for Digital Embedded Systems, PhD thesis, Stanford Univer-
sity, December 1993.

