Filter Coefficient Design

- Many algorithms to find the coefficients for a digital (or analog) filter
 - Butterworth
 - Chebyshev
 - Bilinear transformation
 - Elliptic
- Some specify no ripple in the pass band or the stop band

Parks-McClellan Method

- Parks-McClellan method is a popular method
 - Published in the early 70s
 - Iterative
 - Computationally efficient
 - Works by specifying length of filter and frequency/magnitude pairs
 - See Oppenheim & Schafer for a thorough discussion
Filter Specification

- Filter specifications are frequently given in dB as min/max attenuation/ripple over frequency regions
- Ex:
 - Low-pass filter
 - Maximum +/- 4dB ripple in passband
 - Sampling frequency is 100 MHz
 - Passband from DC to 12.5 MHz
 - Minimum attenuation 22dB from 19 MHz to 25 MHz

Example Filter

- Example filter
 - Low-pass
 - frequencies specified as fractions of π:
 - $[0 \ 0.25 \ 0.30 \ 1]$;
 - corresponding amplitudes: $[1 \ 1 \ 0 \ 0]$;
 - Don’t care about transition band between 0.25 pi and 0.30 pi
 - Use `remez()` function in matlab
Example Filter

- 7 coeffs.

Example Filter

- 11 coeffs.
Example Filter

- 21 coeffs.

Example Filter

- 51 coeffs.
Example 21-tap Filter

- \(\text{coeffs} = \text{remez}(20, [0 \ 0.25 \ 0.30 \ 1], [1 \ 1 \ 0 \ 0]) \);
- Notice \text{remez} function’s first argument is the number of desired taps minus 1
- \text{remez()} for filter design.
 `>> \text{help remez}`
 to get more information on a matlab function
- To plot the coefficients, use
 `stem(-10:10, \text{coeffs});`

Example Filter Coefficients

- Coefficients of 21-tap filter
- Note \text{sinc()} shape in time domain
- Remember this is a low-pass which is a \text{rect()} in the frequency domain