Radix 2, Decimation-In-Time (DIT)

- Input order “decimated” — needs bit reversal
- Output in order
- Butterfly

\[X = A + BW \]
\[Y = A - BW \]

Radix 2, Decimation In Frequency (DIF)

- Input in order
- Output “decimated” — needs bit reversal
- Butterfly
 - Two CPAs
 - Wider multiplier

\[X = A + B \]
\[Y = (A - B) W \]
Radix 4, DIT Butterfly

- Decimation in Time (DIT) or Decimation in Frequency (DIF)

A B C D

V W X Y

Higher Radices

- Radix 2 and radix 4 are certainly the most popular
- Radix 4 is on the order of 20% more efficient than radix 2 for large transforms
- Radix 8 is sometimes used, but longer radix butterflies are not common because additional efficiencies are small and added complexity is non-trivial (especially for hardware implementations)
Common-Factor FFTs

• Key characteristics
 – Most common class of FFTs
 – Also called Cooley-Tukey FFTs
 – Factors of \(N \) used in decomposition have common factor(s)

• Radix-\(r \)
 – \(N = r^k \), where \(k \) is a positive integer
 – Butterflies used in each stage are the same
 – Radix-\(r \) butterflies are used
 – \(N/r \) butterflies per stage
 – \(k = \log_r N \) stages

Common-Factor FFTs

• Mixed-radix
 – Radices of component butterflies are not all equal
 – More complex than radix-\(r \)
 – Is necessary if \(N \neq r^k \)
 – Example
 • \(N = 32 \)
 • Could calculate with two radix-4 stages and one radix-2 stage
Prime-Factor FFTs

• The length of transforms must be the product of relatively prime numbers
• This can be limiting, though it is often possible to find lengths near popular power-of-2 lengths (e.g., $7 \times 11 \times 13 = 1003$)
• Their great advantage is that they have no W_N twiddle factor multiplications
• Another large disadvantage is their irregular sorting of input and output data
• Irregular addressing for butterflies

Other FFTs

• Split-radix FFT
 – When $N = p^k$, where p is a small prime number and k is a positive integer, this method can be more efficient than standard radix-p FFTs

• Winograd Fourier Transform Algorithm (WFTA)
 – Type of prime factor algorithm based on DFT building blocks using a highly efficient convolution algorithm
 – Requires many additions but only order N multiplications
 – Has one of the most complex and irregular structures

• FFTW (www.fftw.org)
 – C subroutine libraries highly tuned for specific architectures
Other FFTs

• Goertzel DFT
 – Not a “normal” FFT in that its computational complexity is still order N^2
 – It allows a subset of the DFT’s N output terms to be efficiently calculated

Bit-Reversed Addressing

• Normally:
 – DIT: bit-reverse inputs before processing
 – DIF: bit-reverse outputs after processing
• Reverse addressing bits for read/write of data
 – 000 (0) \rightarrow 000 (0) # Word 0 does not move
 – 001 (1) \rightarrow 100 (4) # Original word 1 goes to location 4
 – 010 (2) \rightarrow 010 (2) # Word 2 does not move
 – 011 (3) \rightarrow 110 (6) # Original word 3 goes to location 6
 – 100 (4) \rightarrow 001 (1) # …
 – 101 (5) \rightarrow 101 (5)
 – 110 (6) \rightarrow 011 (3)
 – 111 (7) \rightarrow 111 (7)
Addressing In Matlab
(Especially helpful for FFTs)

- Matlab
 - Matlab can not index arrays with index zero!
- In matlab, do address calculations normally
 - \(AddrA = 0, 2, 4, \ldots \)
 - \(AddrB = 1, 3, 5, \ldots \)
- then use pointers with an offset of one whenever indexing arrays
 - \(AddrA = \ldots; \)
 - \(AddrB = \ldots; \)
 - \(A = \text{data}(AddrA+1); \)
 - \(B = \text{data}(AddrB+1); \)
 - \(\text{data}(AddrA+1) = X; \)
 - \(\text{data}(AddrB+1) = Y; \)

Signal Growth

- Note in DFT equation signal can grow by \(N \) times
- This is also seen in the FFT in its growth by \(r \) times in a radix-\(r \) butterfly, and \(\log_r N \) stages in the entire transform: \(r^\left(\log_r N\right) = N \)
- Thus, the FFT processor requires careful scaling
 - Floating point number representation
 - Easiest conceptually, but expensive hardware. Typically not used in efficient DSP systems.
 - Fixed-point with scaling by \(1/r \) every stage
 - First stage is a special case. Scaling must be done on the inputs before processing to avoid overflow with large magnitude complex inputs with certain phases.
 - Block floating point