CMPE 691: Digital Signal Processing Hardware Implementation

Course Master
Prof. Tinoosh Mohsenin
ITE 323
tinoosh@umbc.edu
410-455-1349

Other Faculty N/A

Lecture
MW 4:00-5:15 pm
ITE 375

Office hours
After lecture or by appointment

Webpage
http://www.csee.umbc.edu/~tinoosh/cmpe691/

Check frequently for class news, handouts, papers, and assignments.

Prerequisites
CMPE 310, CMPE 415

Grading: Letter
50% Homework/minor projects
20% Midterm Exam
20% Final project and presentation
5% Quizzes
5% Classroom participation

Proposed Catalog Course Description
This graduate course will investigate implementations of digital signal processing and communication algorithms in hardware (including FPGAs and ASICs) and will investigate the use of DSP hardware in modern applications such as mobile phones, biomedical devices and satellite transceivers. Emphasis is on digital signal processors, design implementation on FPGA/ASIC fabrics and test real systems on board, architectures, control, functional units, and circuit topologies for increased performance and reduced circuit size and power dissipation.
General Course Description & Objectives
Through this course, students will develop the necessary skills to design simple processors suitable for numerically intensive processing with an emphasis on FPGA/ASIC implementation flow.

Specifically, the course will investigate:

1) High-level DSP optimizations such as pipelining, unfolding, and parallel processing

2) Common DSP and communication algorithms such as FFTs, finite impulse response (FIR) filters, direct digital frequency synthesizers, correlators and error correction.

3) Modeling of DSP algorithms in Matlab and conversion of Matlab models into fixed-point Verilog blocks

4) System implementation on FPGA boards and verification

5) Platform implementation issues: hardware vs. software, FPGA vs. ASIC, power, area, throughput, etc.

6) Applications of DSP hardware such as mobile phones, biomedical devices, satellite receivers and software defined radios

Topical Outline
I. Digital signal processing overview
 A. DSP workloads
 B. Example applications

II. Processor building blocks
 A. Quick review of Verilog hardware description language
 B. Binary number representations
 C. Types of Adders and Multipliers
 F. Fixed-input multipliers (optimizations)
 G. Complex arithmetic hardware
 H. Memories

III. DSP and Communication algorithms and systems
 A. LDPC Decoding
 B. FIR filtering
 C. Multi-rate signal processing
 B. Processor control and datapath integration
 D. Example systems: FFT, LDPC Decoder/Encoder, OFDM, biomedical imaging

IV. Design optimization
 A. Platform implementation fabrics FPGAs and ASICs
 B. Verilog synthesis to a gate netlist
 C. Delay estimation and reduction
 D. Area estimation and reduction
 E. Power estimation and reduction
Course weekly Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Handout/Reading (Slides are available in website)</th>
<th>Topics</th>
<th>HW or Readings</th>
</tr>
</thead>
</table>
| 1 | Chapter 3, Peter J. Ashenden
1:SignExtension
2:EfficMultInputAddition,
4:ExampMult, 5:Verilog | Course introduction, DSP overview, MAC; FIR, convolution, dot products; Number representations, sign extension, Redundant representations; Adders: carry-propagate vs. carry-save, subtraction, ripple, carry-select adders | Programmable DSP Architectures: Part I Edward A. Lee |
| | | Carry-lookahead adders; multiple-input sign extension, multipliers, verilog | Quick Reference For Verilog, Rajeev Madhavan
HW1: Binary arithmetic, verilog, and many-input adders |
| 2 | | FPGA Design Flow | |
| 3 | 5:FPGA flow | Communications Systems, Modulations, error correction | |
| 4 | 6:Error Correction | Low Density Parity Check (LDPC) decoding
LDPC decoder hardware implementation
Area, speed, power tradeoffs | HW2: Synthesis and Place and route, LDPC decoder |
| 5 | 7:LDPC | control circuits, state machine design, Squaring, fixed-input multiplies
Complex arithmetic, complex rotations, conversions, and amplitude estimation, Saturation, rounding | |
| 6 | Chapter 4, Peter J. Ashenden
7:VerilogTesting,
8:VerilogControl | Fourier Transform II, DFT, filters, filter design | |
| 7 | 9:dB, 17:FiltCoeffDesign,
10:SignalMags,
11:FilterResponse, 12:FIRScaling | |

8 13: DFT & FFT background,
 14: FFT diagrams
 15: FFT algorithms

The Fast Fourier Transform,
Implementing FFT processors

HW3: Filters, FFT

9

Midterm

10 16: Seizure detection
 Seizure detection hardware

11 17: Multi-rate,
 18: Upsampling,
 19: Decimation,
 20: DC offset

Convolution using DFT/FFTs,
Upsampling, decimation, DC offset,
Automatic gain control

12 21: Imaging hardware
 Biomedical imaging, Ultrasound Imaging

Final Project: seizure detection and transmission

13

Ultrasound imaging hardware implementation

14 Chapter 4, Peter J. Ashenden
 22: Implementation fabrics

FPGA vs ASIC implementation

15

Final project presentation

Textbook

Digital Design an Embedded Systems Approach Using VERILOG, Peter J. Ashenden,

VLSI Digital Signal Processing Systems: Design and Implementation, Keshab K. Parhi,

Suggested references

Verilog According to Tom (available on course web page), Tom Chanak
Quick Reference for Verilog HDL (available on course web page), Rajeev Madhavan
Disabilities
Students who are covered under the American Disabilities Act should inform the teacher privately of this fact so that appropriate instructional arrangements can be made.

Academic integrity
Cheating in this course will cause you to fail the course. You are encouraged to consult the instructor if you have any questions on homework, projects and/or exams. By enrolling in this course, each student assumes the responsibilities of an active participant in UMBC's scholarly community in which everyone's academic work and behavior are held to the highest standards of honesty. Cheating, fabrication, plagiarism, and helping others to commit these acts are all forms of academic dishonesty, and they are wrong. Academic misconduct could result in disciplinary action that may include, but is not limited to, suspension or dismissal. Consult the UMBC Student Handbook to read the full Student Academic Conduct Policy.

Late work policy
If assignment is reviewed in class, no credit is possible for late work. If assignment was not reviewed in class, there will be a 1/3 reduction of remaining credit per day (i.e., 100% -> 67%, 44% -> 30% ...).

Regrading policy
Please bring clear grading errors to my attention. Non-obvious grading issues will not be considered due to fairness to all students, and the inherent subjectiveness of grading.

References list
2. Zhengya Zhang, Design of LDPC Decoders for Improved Low Error Rate Performance, Ph.D thesis, University of California Berkeley, CA, USA, 2009
6. Verilog According to Tom, Tom Chanak
7. Quick Reference for Verilog HDL, Rajeev Madhavan
