Arithmetic logic and Verilog
Subtraction

- Essentially the same hardware as an adder
- \(A - B = A + (-B) \)
- Recall that for 2’s complement numbers,
 \(-B = (\neg B) + 1\)
- So now we have
 \(A - B = A + (\neg B) + 1 \)
Subtraction

- Often easy to find a place to add in a “1” in the lsb position

\[A \sim B \quad 00000001 \]

\[A - B \]

\[c_{in} = 1 \]
Adder/Subtractor Circuits

- Adder can be any of those we have seen
 - depends on constraints
Subtraction in Verilog

```verilog
module adder_subtracter ( output [12:0] s,
                          input [11:0] x, y,
                          input mode );
    assign {s} = !mode ? (x + y) : (x - y);
endmodule
```

- When mode=0 => adds
- else subtracts
module and4_rtl(y_out, x_in);
 input [3:0] x_in;
 output y_out;

 assign y_out = & x_in;

endmodule

Equivalents:
assign y_out =
x_in[1] & x_in[0];

and(y_out, x_in[4],
x_in[2], x_in[1],
x_in[0];
Defining Port Connections

```
module Add_half (sum, c_out, a, b);  Module definition

half_adder m1(w1, w2, a, b);
half_adder m2(sum, w3, w1, c_in);

half_adder m1(.sum(w1), .c_out(w2),
             .a(a),   .b(b));
half_adder m2(.sum(sum), .c_out(w3),
             .a(w1),   .b(c_in));

half_adder m1(.a(a),   .b(b),
             .sum(w1), .c_out(w2));
half_adder m2(.sum(sum), .c_out(w3),
             .a(w1),   .b(c_in));
```

Ordered connections
Order defined
Module definition

Ports
Exposed names
so order doesn't matter
Equality Comparison

- XNOR gate: equality of two bits
 - Apply bitwise to two unsigned numbers

- In Verilog, `x == y` gives a bit result
 - 1'b0 for false, 1'b1 for true

```verilog
assign eq = x == y;
```
module compare_2_str (A_lt_B, A_gt_B, A_eq_B, AO, A1, BO, B1);
 input AO, A1.B0, B1;
 output A_lt_B, A^gL_B, A_eq_B;
 wire w1, w2, w3, w4, w5, w6, w7;
 or (A_lt_B, w1, w2, w3);
 nor (A„gt_B, A_lt_B. A_eq_B);
 and (A.. eq_B, w4, w5);
 and (w1,w6, B1);
 and (w2, w6, w7, BO);
 and (w3, w7, BO, B1);
 not (w6, A1);
 not (w7, AO);
 xnor (w4, A1.B1);
 xnor (w5, AO, BO);
endmodule
module compare_2a (A_lt_B, A_gt_B, A_eq_B, A1, AO, B1, BO);
 input A1, AO, B1, BO;
 output A_lt_B, A_gt_B, A_eq_B;
 assign A_lt_B = (~A1) & B1 | (~A1) & (~AO) & BO \\
 | (~A0) & B1 & BO;
 assign A_gt_B = A1 & (~B1) | AO & (~B1) & (~BO) \\
 | A1 & AO & (~BO);
 assign A_eq_B = (~A1) & (~A0) & (~B1) & (~BO) \\
 | (~A1) & AO & (~B1) & BO | A1 | AO & B1 & BO | A1 & \\
 | (~AO) & B1 & (~BO);
endmodule
module compare_2b (A_lt_B, A_gt_B, A_eq_B, A1, A0, B1, B0);
 input A1, A0, B1, B0;
 output A_lt_B, A_gt_B, A_eq_B;
 assign A_lt_B = ({A1, A0} < {B1, B0});
 assign A_gt_B = ({A1, A0} > {B1, B0});
 assign A_eq_B = ({A1, A0} == {B1, B0});
endmodule

module compare_2_ca (A_lt_B, A_gt_B, A_eq_B, A, B);
 input [1:0] A, B;
 output A_lt_B, A_gt_B, A_eq_B;
 assign A_lt_B = (A < B);
 assign A_gt_B = (A > B);
 assign A_eq_B = (A == B);
endmodule
module compare_2_algo (A_lt_B, A_gt_B, A_eq_B, A, B);

input [1:0] A, B;
output A_lt_B, A_gt_B, A_eq_B;
reg A_lt_B, A_gt_B, A_eq_B;
always @ (A or B) // Behavior and event expression
begin
 A_lt_B = 0;
 A_gt_B = 0;
 A_eq_B = 0;
 if (A==B) A_eq_B = 1;
 else if (A > B) A_gt_B = 1;
 else A_lt_B = 1;
end
endmodule
Inequality Comparison

- **Magnitude comparator for** $x > y$

Inequality Comparator Diagram:

- $x_{n-1} > y_{n-1}$
- $x_{n-2} > y_{n-2}$
- $x_{n-2} = y_{n-2}$
- $x_{n-1} = y_{n-1}$
- $x_1 > y_1$
- $x_1 = y_1$
- $x_0 > y_0$
- $x_0 = y_0$
- $x_{n-2} \ldots 0 > y_{n-2} \ldots 0$
- $x_{n-1} > y_{n-1}$
- $x_{n-2} = y_{n-2}$
- $x_1 > y_1$
- $x_1 = y_1$
- $x_0 > y_0$
- $x_0 = y_0$

Digital Design — Chapter 3 — Numeric Basics 14
Comparison Example in Verilog

- Thermostat with target temperature
 - Heater or cooler on when actual temperature is more than 5° from target

```
module thermostat ( output heater_on, cooler_on, 
  input [7:0] target, actual );
  assign heater_on = actual < target - 5;
  assign cooler_on = actual > target + 5;
endmodule
```
Scaling by Power of 2

\[x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0 \]

\[2^k x = x_{n-1}2^{k+n-1} + x_{n-2}2^{k+n-2} + \cdots + x_02^k + (0)2^{k-1} + \cdots + (0)2^0 \]

- This is \(x \) shifted left \(k \) places, with \(k \) bits of 0 added on the right
 - logical shift left by \(k \) places
 - e.g., \(00010110_2 \times 2^3 = 000101100000_2 \)
- Truncate if result must fit in \(n \) bits
 - overflow if any truncated bit is not 0
Scaling by Power of 2

\[x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0 \]

\[x/2^k = x_{n-1}2^{n-1-k} + x_{n-2}2^{n-2-k} + \cdots + x_k2^0 + x_{k-1}2^{-1} + \cdots + x_02^{-k} \]

- This is \(x \) shifted right \(k \) places, with \(k \) bits truncated on the right
 - \textit{logical shift right} by \(k \) places
 - e.g., \(01110110_2 / 2^3 = 01110_2 \)
- Fill on the left with \(k \) bits of 0 if result must fit in \(n \) bits
Scaling in Verilog

- Shift-left (<<) and shift-right (>>) operations
 - result is same size as operand

\[
\begin{align*}
 s &= 00010011_2 = 19_{10} \\
 \text{assign } y &= s << 2; \\
 y &= 01001100_2 = 76_{10}
\end{align*}
\]

\[
\begin{align*}
 s &= 00010011_2 = 19_{10} \\
 \text{assign } y &= s >> 2; \\
 y &= 000100_2 = 4_{10}
\end{align*}
\]
Multipliers

- Widely used in DSP processors, less so in general-purpose processors
- Hardware is typically done the same as you would do it with paper and pencil
- Partial products are copies of the multiplicand AND’d by bits of the multiplier

<draw picture in notes>
Multipliers 3 Main Steps

- Generate partial products
- Reduce the partial product array (normally using carry-save addition)
 - Linear array addition
 - Tree addition (Wallace tree)
- Final adder
 - Convert carry-save form to single word form
 - Whichever one you like, probably a faster one
 - Carry-propagate adder (CPA)
Array Multiplier
Serial Multiplier

- Adds one per cycle
- Requires writing state machines
Unsigned Multiplication

\[xy = x \left(y_{n-1} 2^{n-1} + y_{n-2} 2^{n-2} + \cdots + y_0 2^0 \right) \]

\[= y_{n-1} x 2^{n-1} + y_{n-2} x 2^{n-2} + \cdots + y_0 x 2^0 \]

- \(y_i x 2^i \) is called a partial product
 - if \(y_i = 0 \), then \(y_i x 2^i = 0 \)
 - if \(y_i = 1 \), then \(y_i x 2^i \) is \(x \) shifted left by \(i \)

Combinational array multiplier
- AND gates form partial products
- adders form full product
Unsigned Multiplication

- Adders can be any of those we have seen
- Optimized multipliers combine parts of adjacent adders
Product Size

- Greatest result for \(n \)-bit operands:

\[
(2^n - 1)(2^n - 1) = 2^{2n} - 2^n - 2^n + 1 = 2^{2n} - (2^{n+1} - 1)
\]

- Requires \(2n \) bits to avoid overflow

- Multiplying \(n \)-bit and \(m \)-bit operands
 - requires \(n + m \) bits

```verilog
wire [ 7:0] x; wire [13:0] y; wire [21:0] p;

assign p = {14'b0, x} * {8'b0, y};

assign p = x * y; // implicit resizing
```
Reset-able and Enable-able Registers

- Sometimes it is convenient or necessary to have flip-flops with special inputs like reset and enable
- When designing flip-flops/registers, it is ok (possibly required) for there to be cases where the always block is entered, but the reg is not assigned
- No fancy code, just make it work
- Normally use synchronous reset instead of asynchronous reset (easier to test)
Reset-able and Enable-able Registers

- Example FF with reset and enable (reset has priority)

```verilog
always @(posedge clk) begin
    if (reset) // highest priority
        out <= #1 1'b0;
    else if (enable)
        out <= #1 c_out;
    // ok if no assignment (out holds value)
end
```
Reset-able and Enable-able Registers

- Example FF with reset and enable (enable has priority)

```verilog
always @(posedge clk) begin
  if (enable) begin   // highest priority
    if (reset)
      out <= #1 1'b0;
    else
      out <= #1 c_out;
  end
  // ok if no assignment (out holds value)
end
```
Reset-able and Enable-able Registers

- Use reset-able FFs only where needed
 - FFs are a little larger and higher power
 - Requires the global routing of the high-fanout reset signal

```
cos() + reset only these two registers, but now reset must be enabled for at least 3 clock cycles
```

B. Baas, © 2011
Three types of “case” statements in Verilog

1) case
 - Normal case statement

2) casez
 - Allows use of wildcard “?” character for don’t cares.
     ```verilog
casez(in)
  4'b1???: out = a;
  4'b01??: out = b;
  4'b00??: out = c;
  default: out = d;
endcase
```

3) casex
 - Don’t use it. Could use “z” or “x” logic.
 - default
 - Normally set output to an easily-recognizable value (such as x’s) in a default statement to make mistakes easier to spot
Hardwired Complex Functions

- Complex or “arbitrary” functions are not uncommon
- Examples
 - sin/cos
 - tangent\(^{-1}\)
 - log

\[\log \theta \]

\[\text{out_real} \]
\[\text{out_imag} \]
Hardwired Function in Verilog using a Lookup Table

- always @(input) begin
 case (input)
 4'b0000: begin real=3'b100; imag=3'b001; end
 4'b0001: begin real=3'b000; imag=3'b101; end
 4'b0010: begin real=3'b110; imag=3'b011; end
 ...
 default: begin real=3'bxxx; imag=3'bxxx; end
 endcase
end

- Often best to write a matlab program to write the verilog table as plain text
 - You will need several versions to get it right
 - Easy to adapt to other specifications
- Not efficient for very large tables
- Tables with data that is less random will have smaller synthesized area