III. Floating Point Representation

- Floating Point numbers contain the following components
 1) Mantissa
 2) Mantissa sign (optional): Some method to allow a signed mantissa such as: a) an explicit sign bit, or b) another bit to allow a signed format with the same positive range
 3) Exponent
 4) Exponent sign (optional): Some method to allow a signed mantissa such as: a) an explicit sign bit, or b) another bit to allow a signed format with the same positive range
 5) Exponent base. The value is normally fixed and not explicitly provided. Common values are 2, a power-of-2, or 10 (used for financial applications).

Floating Point Basics

- Normally write: \(\text{mantissa} \times 2^{\text{exponent}} \)
- Alternately, \(\text{sign} \times \text{mantissa} \times 2^{\text{exponent}} \)
- In hardware, we normally operate on, transmit, and save only the mantissa and exponent:
 \[(\text{MMMMMMM, EEEE})\]
- Normalized floating point numbers contain no extra (useful) bits at the MSB of the mantissa
 - Example:
 - 00010 * 2^0: not normalized, or “denormalized”
 - 01000 * 2^(-2): normalized, with 2’s comp. mantissa
 - 10000 * 2^(-3): normalized, with unsigned mantissa
Floating Point → Fixed Point Conversion

- If the exp is unsigned, the shifter shifts only to the left
- If the exp is signed, the shifter must shift to the left and right
- Example:
 \[01011. \times 2^2 \]
 \[01011. \ll 2 \]
 \[010100. \]

Fixed Point → Floating Point Conversion

- Leading 0s/1s detector finds the optimum place to begin selecting bits for the mantissa
- Common pitfall: If the mantissa is signed, its sign bits must be maintained!
Floating Point

- **Fixed-to-float conversion example (positive input)**
 - Input: 8-bit 2’s complement (signed) integer
 - Output: 4-bit 2’s complement (signed) mantissa

 a) integer mantissa

 \[
 \begin{align*}
 \text{Input: } & 0 0 0 0 1 1 0 0. \\
 & 12 \rightarrow 0 1 1 0. \times 2^{001} \% 2^1 \\
 \text{Output: } & 6 \times 2^1 \\
 \end{align*}
 \]

 b) fractional “0.4 format” mantissa

 \[
 \begin{align*}
 \text{Input: } & 0 0 0 0 1 1 0 0. \\
 & 12 \rightarrow .0 1 1 0 \times 2^{101} \% 2^{101} \\
 \text{Output: } & 0.375 \times 2^5 \\
 \end{align*}
 \]

- **Fixed-to-float conversion example (negative input)**
 - Input: 8-bit 2’s complement (signed) integer
 - Output: 4-bit 2’s complement (signed) mantissa

 a) integer mantissa

 \[
 \begin{align*}
 \text{Input: } & 1 1 0 1 0 0 0 1. \\
 & -47 \rightarrow 1 0 1 0. \times 2^{011} \% 2^3 \\
 \text{Output: } & -6 \times 2^3 \\
 \end{align*}
 \]

 b) fractional “2.2 format” mantissa

 \[
 \begin{align*}
 \text{Input: } & 1 1 0 1 0 0 0 1. \\
 & -47 \rightarrow 1 0.1 0 \times 2^{101} \% 2^5 \\
 \text{Output: } & -1.5 \times 2^5 \\
 \end{align*}
 \]