Design Challenges: An Industrial View

- Correct functionality requirements

Design Challenges:
- Correct functionality requirements
- Timing
- Area
- Power
- Runtime
- Memory
- Time to Market

Designer

EE M216A :: Fall 2011

Hardware Description Language (HDL) and Logic Synthesis

Alireza Tarighat (ee216a@gmail.com)

- Slides are Courtesy of Prof. Dejan Marković.

UCLA
Logic Synthesis

- **Synthesis Tool**
 - Optimizes gate-level implementation for speed/area/power
 - Sizing the gates, inserting gates, etc.
 - Does not touch functional behavior (maintains logic equivalency)
 - Works with any standard cell library (any technology, any foundry)
 - Decouples logic design from technology/fab/node and standard cell library
 - Takes in different input formats
 - VHDL
 - Verilog
 - Gate-level netlist
 - Takes in different design constraints
 - Simplest one: clock period

- **Design constraints**
 - Environmental constraints
 - Driver
 - Load (max fanout)
 - Define clocks
 - Cycle time
 - Uncertainty (jitter)
 - Optimization constraints
 - In and out delay / max transition
 - Max area etc.
 - Clock period vs. area vs. power
 - Timing exceptions
 - Multi-cycle, False-path
 - Example Synthesis Tool:
Logic Synthesis is Timing-Driven

- This is a generic design used during synthesis
 - Internal data-path delay (cycle (and hold) time analysis)
 - Relationship to in and out paths
 - Timing exceptions

![Diagram]

Timing Constraints

- **Clock period**: set by `define_clock`
- **Input delay**: arrival of an external path with respect to a Clk edge
- **Output delay**: timing path from an output port to a register input of an external block

- Input and output delays budget timing for surrounding logic in general case when the in/out ports are not registered
Understanding Timing Constraints

- Three important constraints (clock, input, output)
 - Blue box = current_design (to be retimed)

```
logic
```

```
set_input_delay
```
(affects input logic)

```
set_output_delay
```
(affects output logic)

```
create_clock
```
(affects internal logic)

Environment: Drivers, Load...

- To simulate realistic inputs, we can set the driving cell using the `external_driver` command, to be any cell in the library
 - This ensures that the input has a finite slew rate

- The load capacitance can be set on the output ports using the `external_pin_cap` command

- By default the Encounter RTL Compiler only tries to meet the timing constraints without optimizing power

- If the `max_dynamic_power` attribute is set to some value, the tool tries to meet the timing specs while also optimizing for power in the process
Example: Automated Adder Synthesis

- Copy the following files to your work directory
 /usr/public.2/ee216a/cadence/SOC62/SynLib.v
 /usr/public.2/ee216a/cadence/SOC62/adder.v
 /usr/public.2/ee216a/cadence/SOC62/adder.tcl

- The top level synthesis script adder.tcl reads in the HDL file, sets timing, load and power constraints, and runs synthesis

- To run RTL synthesis type the following command
 > rc –files adder.tcl –gui

- The GUI window will show detailed architecture (gate level). Use report power, report area, report timing commands in the rc command window to get Power, Area and Delay numbers

Setup Example: Adder.tcl (1/2)

```
set_attribute library /w/apps/apps.16/cadence/gsclib090_v2.9/timing/typical.lib      Define lib
set_attribute hdl_language v2001
read_hdl adder.v
read_hdl SynLib.v
elaborate adder

define_clock -name clk -period 1000 -design /designs/adder
  {/designs/adder/ports_in/clk}
dc::set_time_unit -picoseconds

dc::set_load_unit -femtofarads

dc::set_input_delay 20 -clock clk [all_inputs]
dc::set_output_delay 100 -clock clk [all_outputs]

set_attribute external_driver [find [find /libcell DFFX1] -libpin D]
  {/designs/adder/ports_in/*}
set_attribute external_pin_cap 26.5488 {/designs/adder/ports_out/*}

set_attribute lp_power_unit mW /
set_attribute max_dynamic_power 0.5 /designs/adder
```

Set timing
Set env.
Opt.
Setup Example: Adder.tcl (2/2)

How does synthesis work?

Example Clock, In and Out Delay [Synopsys]

Define clock, input and output delay

```
cREATE_CLOCK -NAME "Clk" -PERIOD $Tclk
SET_INPUT_DELAY 0.5
SET_OUTPUT_DELAY [EXPR $Tclk - 0.5 + $wire_margin] ;# wire_margin = 0.2
```

Work with expressions and variables
The adder.tcl file sets constraints & optimization parameters

```tcl
set_attribute library /u/apps/apps.16/cadence/gcлюбv2.9/timing/typical.lib
set_attribute hdl_language v2001
read_hdl adder.v
read_hdl SynLib.v
elaborate adder
dc::current_design adder
dc::set_time_unit -picoseconds
dc::set_load_unit -fFIM"
define_clock -name clk -period 500 -design /designs/adder (/designs/adder/ports_in/clk)
dc::set_input_delay 20 -clock clk [all_inputs]
dc::set_output_delay 100 -clock clk [all_outputs]
set_attribute external_driver [find [find / -libcell OFFxy] -liboin D] [/designs/adder/ports_in/x]
set_attribute external_pin_cap 26.5488 [/designs/adder/ports_out/x]
set_attribute ip_power_unit mw
set_attribute max_dynamic_power 0.25 [/designs/adder]
synthesize -toMapped -effort high
report_area > adder_area.rpt
report_power > adder_power.rpt
report_timing > adder_timing.rpt
report_clocks > adder_clocks.rpt
```

Pre- and Post-Layout Clock

![Pre- and Post-Layout Clock Diagram](image)

- **Pre-layout**
 - `create_clock -p 30 -n MCLK Clk`
 - `set_clock_uncertainty 0.5 MCLK`
 - `set_clock_transition 0.25 MCLK`
 - `set_clock_latency -source 4 MCLK`
 - `set_clock_latency 2 MCLK`

- **Post-layout**
 - `create_clock -p 30 -n MCLK Clk`
 - `set_clock_uncertainty 0.1 MCLK`
 - `set_clock_latency -source 4 MCLK`
 - `set_propagated_clock MCLK`
Synthesis Results: Fast Adder

- Adder synthesized to meet timing constraint of 550 ps
- Input is registered from a FF
 - Clk-Q delay = 157 ps
 - Setup time = 82 ps
- Effective adder delay = 311 ps
- Timing constraints are stringent, tool synthesizes a carry look ahead type of adder
- Synthesis reports
 - Area = 1035 μm²
 - Energy (active) = 0.2145 fJ
 - Power (leak) = 0.005 mW

Synthesis Results: Slow Adder

- Adder delay = 757 ps
- Structure is somewhat like carry ripple topology
- Area = 548 μm² (half of previous)
- Energy (active) = 0.13 fJ
 - Nearly ½ of previous design
 - Expected since \(V_{DD} \) was the same, \(E_{active} \) depends only on \(C_{sw} \), which was halved with the area being halved...
- Power (leak) = 0.002 mW
 - Also reduced due to reduced area
Synthesis Results

- Energy-delay tradeoff plot obtained from synthesis
 - Keep timing constraint, move down the energy axis (left plot)
 - Resulting energy-area should be below reference curve (right plot)

High-Level Design Issues

- You may think design is a straightforward logical process
 - Start with the idea of what you need to build
 - And then build it
- Real design is not like that
 - Think you have an idea of what to build
 - Through the design process you figure out what you really want to build
 - Need to validate idea early in the process
- What you build depends on the implementation capabilities and constraints
 - Implementation issues will change the specification

Need a language that helps with the real (interactive) design process