VLSI Topics

Tinoosh Mohsenin, Chintan Ptel
CMPE 641
Today

- Administrative items
- Syllabus and course overview
- Digital signal processing and hardware design overview
 - Digital Signal processing and applications
 - Digital logics
 - ASIC, FPGA, programmable processors
Course Communication

- Email
 - Urgent announcements

- Web page
 - http://www.csee.umbc.edu/~tinoosh/cmpe641/

- Office hours
 - By appointment
Course Description

- Lectures
- Handouts
- Homework/ projects
 - Three/four HWs
- Midterm Exam
 - To be decided
- Final Project, Demonstration and Presentation
Lectures

- Ask questions at any time
- Participate in the class (%5 of your grade)
- Please silence phones
- Please hold conversations outside of class
- No computer usage in class
The Future: New Applications

- Very limited power budgets
- Require significant digital signal processing
- Must perform in real time
- Reconfigurable for different environments
- Require innovations in algorithm, architecture, and circuit design
The vast quantities of real-time data produced by embedded sensors, smartphones and wearable systems present new challenges:
- Data transmission, storage, and analysis
- Maintaining high throughput processing and low latency communications,
- Low power consumption.

Systems are getting smarter and independent:
- Incorporate adaptive and intelligent kernels to overcome the noise and false detection by combining the analysis of multi-modal signals.

Reconfiguration and programmability are required to generalize hardware for different environments and tasks:
- Reduces design time and overall time to market

Increasing energy-efficiency (i.e. \uparrowGOPS/W, \downarrowpJ/op) requires innovations in algorithms, programming models, processor architectures, and circuit design.
Embedded Applications

- Requirements:
 - Real time, low power, light weight, high accuracy

- Steps to design an embedded application on a programmable processor
 - Understand the target platform
 - e.g single processor vs multiprocessor
 - Understand the digital signal processing requirement for the application
 - What algorithms
 - How many data channels, how many bits per channel data
 - Break the application into multiple tasks
 - Write a code for each task and verify it using real/simulated data and examine the accuracy
 - Program the processor
 - Single core: all tasks in one core
 - Multi core: parallelize the tasks and program each core for the task
Future Military Applications

- Field Satellite Comm. Operator
- SATCOM
- Gilat Gobalight Mobile VSAT
- Wideband Global SATCOM
- Local Teleradiology
-Combat Support Hospital
- Global Teleradiology

Ultrasound with DARPA-Vuzix Augmented Reality Goggles

First Responder (Line Medic)

WPAN and WLAN

Wireless Integrated Ultrasound System

Point of Injury

Walter Reed National Military Medical Center or Fort Detrick

@ D. Truong
Wearable Medical Monitoring and Analysis

- Data must be acquired, analyzed and transmitted
- Some must be processed in real time
- Ultra low power processing
Compressive Sensing for Reduction in Data Transmission

- Single pixel camera setup at NASA Goddard
- Image reconstruction using compressive sensing on Virtex 7 FPGA
Tongue Drive System (TDS)

- A tongue-operated assistive technology that enables individuals with severe physical impairments to control their environments.
- An array of magnetic sensors detect the magnetic field variations resulted from the movements of a small magnetic tracer attached to the tongue, convert the sensed signals to the user commands in a local processor and wirelessly send the user command to the target device.
eTDS: Hardware

Headset Components

1. Sensors:
Four 3-axial magneto-resistive sensors (two on each pole)

2. Magnet:
Disk-shaped [4.8mm x 1.5mm] Embedded in a titanium tongue stud

3. Control Unit:
- MCU: TI CC2510
- 2.4 GHz RF Transceiver

4. Battery:
130 mAh, 3.7 V, plus power management circuit

- eTDS has been clinically tested with NIH support at the top rehab institutes, such as Shepherd Center in Atlanta and Rehabilitation Institute of Chicago.
Current iTDS Prototype

- Transmits all the raw data to a computer to process
- High transmission volume causes high power consumption
 - Sends 20 bits for each sensor at 50 Hz
 - There are 12 sensors => total is 12 Kbits/sec
- Size limitation restricts us to a 50mAh battery and consequently a shorter battery life
Wearable Seizure Detection

- Epilepsy is the 4th most common neurological disorder, 1 in 26 people may develop epilepsy in their lifetime.

- About 25% of epilepsy patients have intractable seizures which may occur with an unpredictable pattern, including during sleep when there may be less surveillance by family.
 - Places these patients at greatest risk from the potential morbidity and mortality of severe or sustained seizures.

- Current ambulatory seizure monitoring devices are infeasible for long-term and continuous use due to:
 - Large false positive/negative signals, noise due to patient activity, bulky equipment, high power consumption, and the inability of patients to carry on with their daily lives.
Seizure Detection Problem

- Electrical signals can be detected by EEG signals before or just at the start of clinical symptoms
 - The ability to detect can be used to warn the patient or alert caregiver
- Seizure patterns are unique to each patient and seizure and non-seizure EEG signals from the same patient can share similar characteristics
- Complex algorithms and multichannel detection is necessary for better detection

Chandler et al. BioCass 2011
A wearable solution for Multi-physiological signal processing

- **Headband sensors**
 - EEG data, EOG, gyroscope data, and accelerometer
- **Wristband sensors**
 - Heart rate, blood flow, and blood oxygenation through pulse oximeter.
Digital Signal Processing vs Analog Processing

- DSP arithmetic is completely stable over process, temperature, and voltage variations
 - Ex: $2.0000 + 3.0000 = 5.0000$ will always be true as long as the circuit is functioning correctly
- DSP energy-efficiencies are rapidly increasing
- Once a DSP processor has been designed in a portable format (gate netlist, HDL, software), very little effort is required to “port” (re-target) the design to a different processing technology. Analog circuits typically require a nearly-complete re-design.
- DSP capabilities are rapidly increasing
- Analog A/D speed x resolution product doubles every 5 years
- Digital processing performance doubles every 18-24 Months (6x to 10x every 5 years)
Common Trends

- Analog based → Digital based
 - Music: records, tapes → CDs
 - Video: VHS, 8mm → DVD, Blu-ray
 - Telephony, cell phones: analog (1G) → digital (2G, 3G, 4G, …)
 - Television: NTSC → digital (DVB, ATSC, ISDB, …)
 - Many new things use digital data and “speak” digital: computers, networks, digital appliances
Basic Digital Circuit Components

- Primitive components for logic design

- AND gate
- OR gate
- Inverter
- Multiplexer

![Diagram of logic gates](image-url)
Sequential Circuits

- Circuit whose output values depend on current *and previous* input values
 - Include some form of storage of values

- Nearly all digital systems are sequential
 - Mixture of gates and storage components
 - Combinational parts transform inputs and stored values
Flipflops and Clocks

- Edge-triggered D-flipflop
 - stores one bit of information at a time

- Timing diagram
 - Graph of signal values versus time
Hierarchical Design

- Design
- Functional Verification
 - OK?
 - Y
 - N
 - N

- Architecture Design
 - Unit Design
 - Unit Verification
 - OK?
 - Y
 - N
 - N
 - Y
What we learn by the end of semester

- Processor building blocks
 - Binary number representations
 - Types of Adders
 - Multipliers
 - Complex arithmetic hardware
 - Memories

- Communication algorithms and systems

- Design optimization targeted for FPGA
 - Verilog synthesis to a gate netlist
 - Delay estimation and reduction
 - Area estimation and reduction
 - Power estimation and reduction
A Simple Design Methodology

Requirements and Constraints

Design

Functional Verification

OK? Y N

Synthesize

Post-synthesis Verification

OK? Y N

Physical Implementation

Physical Verification

OK? Y N

Manufacture

Test

Digital Design — Chapter 1 — Introduction and Methodology
Hierarchical Design

- Circuits are too complex for us to design all the detail at once
- Design subsystems for simple functions
- Compose subsystems to form the system
 - Treating subcircuits as “black box” components
 - Verify independently, then verify the composition
- Top-down/bottom-up design
Synthesis

- We usually design using register-transfer-level (RTL) Verilog
 - Higher level of abstraction than gates
- Synthesis tool translates to a circuit of gates that performs the same function
- Specify to the tool
 - the target implementation fabric
 - constraints on timing, area, etc.
- Post-synthesis verification
 - synthesized circuit meets constraints
Physical Implementation

- Implementation fabrics
 - Application-specific ICs (ASICs)
 - Field-programmable gate arrays (FPGAs)
- Floor-planning: arranging the subsystems
- Placement: arranging the gates within subsystems
- Routing: joining the gates with wires
- Physical verification
 - physical circuit still meets constraints
 - use better estimates of delays
Codesign Methodology

- Requirements and Constraints
 - Partitioning
 - Hardware Requirements and Constraints
 - Hardware Design and Verification
 - OK?
 - OK?
 - Manufacture and Test

- Software Requirements and Constraints
 - Software Design and Verification
 - OK?
 - OK?
 - Manufacture and Test

Digital Design — Chapter 1 — Introduction and Methodology
Summary

- Digital systems use discrete (binary) representations of information
- Basic components: gates and flipflops
- Combinational and sequential circuits
- Real-world constraints
 - logic levels, loads, timing, area, etc
- Verilog models: structural, behavioral
- Design methodology
Integrated Circuits (ICs)

- Circuits formed on surface of silicon wafer
 - Minimum feature size reduced in each technology generation
 - Currently 90nm, 65nm
 - Moore’s Law: increasing transistor count
 - CMOS: complementary MOSFET circuits
Logic Levels

- Actual voltages for “low” and “high”
 - Example: 1.4V threshold for inputs
Logic Levels

- TTL logic levels with noise margins

V_{OL}: output low voltage
V_{OH}: output high voltage
V_{IL}: input low voltage
V_{IH}: input high voltage

V_{OL} \quad V_{OH} \quad V_{IL} \quad V_{IH}

signal with added noise
noise margin

driven signal
noise margin

0.5V
1.0V
1.5V
2.0V
2.5V
Digital Design — Chapter 1 — Introduction and Methodology
Static Load and Fanout

- Current flowing into or out of an output
 - High: SW1 closed, SW0 open
 - Voltage drop across R1
 - Too much current: $V_O < V_{OH}$
 - Low: SW0 closed, SW1 open
 - Voltage drop across R0
 - Too much current: $V_O > V_{OL}$
 - Fanout: number of inputs connected to an output
 - determines static load
Capacitive Load and Prop Delay

- Inputs and wires act as capacitors

- \(\text{tr} \): rise time
- \(\text{tf} \): fall time
- \(\text{tpd} \): propagation delay
 - delay from input transition to output transition

Digital Design — Chapter 1 — Introduction and Methodology
Other Constraints

- Wire delay: delay for transition to traverse interconnecting wire

- Flipflop timing
 - delay from clk edge to Q output
 - D stable before and after clk edge

- Power
 - current through resistance => heat
 - must be dissipated, or circuit cooks!
Area and Packaging

- Circuits implemented on silicon chips
 - Larger circuit area => greater cost
- Chips in packages with connecting wires
 - More wires => greater cost
 - Package dissipates heat
- Packages interconnected on a printed circuit board (PCB)
 - Size, shape, cooling, etc, constrained by final product
Models

- Abstract representations of aspects of a system being designed
 - Allow us to analyze the system before building it

Example: Ohm’s Law

- \(V = I \times R \)
 - Represents electrical aspects of a resistor
 - Expressed as a mathematical equation
 - Ignores thermal, mechanical, materials aspects
Verilog

- Hardware Description Language
 - A computer language for modeling behavior and structure of digital systems

- Electronic Design Automation (EDA) using Verilog
 - Design entry: alternative to schematics
 - Verification: simulation, proof of properties
 - Synthesis: automatic generation of circuits
Module Ports

- Describe input and outputs of a circuit

Digital Design — Chapter 1 — Introduction and Methodology
module vat_buzzer_struct
 (output buzzer,
 input above_25_0, above_30_0, low_level_0,
 input above_25_1, above_30_1, low_level_1,
 input select_vat_1);

wire below_25_0, temp_bad_0, wake_up_0;
wire below_25_1, temp_bad_1, wake_up_1;

// components for vat 0
not inv_0 (below_25_0, above_25_0);
or or_0a (temp_bad_0, above_30_0, below_25_0);
or or_0b (wake_up_0, temp_bad_0, low_level_0);

// components for vat 1
not inv_1 (below_25_1, above_25_1);
or or_1a (temp_bad_1, above_30_1, below_25_1);
or or_1b (wake_up_1, temp_bad_1, low_level_1);

mux2 select_mux (buzzer, select_vat_1, wake_up_0, wake_up_1);

endmodule
module vat_buzzer_struct

 (output buzzer,
 input above_25_0, above_30_0, low_level_0,
 input above_25_1, above_30_1, low_level_1,
 input select_vat_1);

 assign buzzer =
 select_vat_1 ? low_level_1 | (above_30_1 | ~above_25_1)
 : low_level_0 | (above_30_0 | ~above_25_0);

endmodule
Design Methodology

- Simple systems can be designed by one person using *ad hoc* methods.
- Real-world systems are designed by teams.
 - Require a systematic design methodology.

- Specifies
 - Tasks to be undertaken
 - Information needed and produced
 - Relationships between tasks
 - Dependencies, sequences
 - EDA tools used.
Design using Abstraction

- Circuits contain millions of transistors
 - How can we manage this complexity?

- Abstraction
 - Focus on relevant aspects, ignoring other aspects
 - Don’t break assumptions that allow aspect to be ignored!

- Examples:
 - Transistors are on or off
 - Voltages are low or high
Embedded Systems

- Most real-world digital systems include embedded computers
 - Processor cores, memory, I/O

- Different functional requirements can be implemented
 - by the embedded software
 - by special-purpose attached circuits

- Trade-off among cost, performance, power, etc.