Fixed-input Multiplier

- Sometimes, one input is fixed
 - So remove partial products that are always zero
Fixed-input Multiplier

• Remove partial products that are always zero

• Reduce size by half on average, often more if you can pick the “multiplier” carefully
Fixed-input Multiplier

• The goal is to find the minimum number of power-of-2 numbers to add together to equal the fixed multiplier input
• Ex: multiply by 3
 \[\times 3 = (\times 2) + (\times 1) \]

Multiply by 3

• Ex: multiply by 3
 - \(\times 3 = (\times 2) + (\times 1) \)
 - Verilog:

```verilog
input [7:0] in;
wire [9:0] product;
// multiply by 3
assign product = {in[7], in, 1'b0} + {in[7], in[7], in};
```
Multiply by 56

- Ex: multiply by 56
 - \(x56 = (x32) + (x16) + (x8) \)
 - Verilog:

\[
\begin{align*}
&\text{input [7:0] in;} \\
&\text{wire [13:0] product;} \\
&\text{// multiply by 56} \\
&\text{assign product} = \left\{ \begin{array}{l}
\text{in[7], in, 5'b00000} \\
+ \text{in[7], in[7], in, 4'b0000} \\
+ \text{in[7], in[7], in[7], in, 3'b000}; \\
\end{array} \right.
\end{align*}
\]

Multiply by 56 (better)

- Ex: multiply by 56 (better)
 - \(x56 = (x64) - (x8) \)
 - Verilog:

\[
\begin{align*}
&\text{input [7:0] in;} \\
&\text{wire [13:0] product;} \\
&\text{// multiply by 56} \\
&\text{assign product} = \left\{ \begin{array}{l}
\text{in, 6'b00000} \\
- \text{in[7], in[7], in[7], in, 3'b000}; \\
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\text{assign pro}duct_same = \left\{ \begin{array}{l}
\text{in, 6'b00001} \\
+ \text{~in[7], ~in[7], ~in[7], ~in, 3'b111}; \quad \text{// one way of many}
\end{array} \right.
\end{align*}
\]
Dot Diagram Example

- out = X*3 + Y*56
 - Inputs: 6-bit 2’s complement

- Procedure
 - Input range: [-32, +31]
 - Decompose x3 = x2 + x1
 - Decompose x56 = x64 - x8
 - Output range: [-32, +31] x [59] = [-1888, +1829]
 - Output width: 12 bits
 - Fill out dot diagram
 - S = sign extension bit
 - invert bits when necessary
 - show zeros if dot alignment is not obvious

- Two approaches of thinking of negative partial products (with identical product of course)
 1) Shift PP then invert entire word
 2) Invert PP then shift