Numeric Basics

- Representing and processing numeric data is a common requirement
 - unsigned integers
 - signed integers
 - fixed-point real numbers
 - floating-point real numbers
 - complex numbers
Unsigned Integers

- Non-negative numbers (including 0)
 - Represent real-world data
 - e.g., temperature, position, time, ...
 - Also used in controlling operation of a digital system
 - e.g., counting iterations, table indices
- Coded using unsigned binary (base 2) representation
 - analogous to decimal representation
Binary Representation

- **Decimal: base 10**
 - \(124_{10} = 1 \times 10^2 + 2 \times 10^1 + 4 \times 10^0\)

- **Binary: base 2**
 - \(124_{10} = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0\)
 - \(= 1111100_2\)

- In general, a number \(x\) is represented using \(n\) bits as \(x_{n-1}, x_{n-2}, \ldots, x_0\), where

\[
x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0
\]
Binary Representation

- Unsigned binary is a code for numbers
 - n bits: represent numbers from 0 to $2^n - 1$
 - 0: 0000...00; $2^n - 1$: 1111...11
 - To represent x: $0 \leq x \leq N - 1$, need $\lceil \log_2 N \rceil$ bits

- Computers use
 - 8-bit bytes: 0, ..., 255
 - 32-bit words: 0, ..., ~4 billion
 - (rather recently, 64-bit words)

- Digital circuits can use whatever size is appropriate
Unsigned Integers in Verilog

- Use vectors as the representation
- Can apply arithmetic operations

```verilog
module multiplexer_6bit_4_to_1
  ( output reg [5:0] z,
    input [5:0] a0, a1, a2, a3,
    input [1:0] sel );

  always @*
    case (sel)
      2'b00: z = a0;
      2'b01: z = a1;
      2'b10: z = a2;
      2'b11: z = a3;
    endcase

endmodule
```
Octal and Hexadecimal

- Short-hand notations for vectors of bits
- Octal (base 8)
 - Each group of 3 bits represented by a digit
 - 0: 000, 1:001, 2: 010, ..., 7: 111
 - \(253_8 = 010\ 101\ 011_2\)
 - \(11001011_2 \Rightarrow 11\ 001\ 011_2 = 313_8\)
- Hex (base 16)
 - Each group of 4 bits represented by a digit
 - 0: 0000, ..., 9: 1001, A: 1010, ..., F: 1111
 - \(3CE_{16} = 0011\ 1100\ 1110_2\)
 - \(11001011_2 \Rightarrow 1100\ 1011_2 = CB_{16}\)
Extending Unsigned Numbers

- To extend an \(n \)-bit number to \(m \) bits
 - Add leading 0 bits
 - e.g., \(72_{10} = 1001000 = 000001001000 \)

Verilog code:

```verilog
wire [3:0] x;
wire [7:0] y;
assign y = {4'b0000, x};
assign y = {4'b0, x};
assign y = x;
```
Truncating Unsigned Numbers

- To truncate from \(m \) bits to \(n \) bits
 - Discard leftmost bits
 - Value is preserved if discarded bits are 0
 - Result is \(x \mod 2^n \)

```
assign x = y[3:0];
```
Unsigned Addition

- Performed in the same way as decimal

```
  0 0 1 1 1 1 0 0 0 0
  1 0 1 0 1 1 1 1 0 0
  0 0 1 1 0 1 0 0 1 0
  0 0 1 1 1 1 0 0 0 0

  1 1 1 0 0 1
  0 1 0 0 1
  1 1 1 0 1
  1 1 0 0 1

  1 1 1 0 0 0 1 1 1 0
  1 0 0 1 1 0
```
Addition Circuits

- **Half adder**
 - for least-significant bits
 \[s_0 = x_0 \oplus y_0 \]
 \[c_1 = x_0 \cdot y_0 \]

- **Full adder**
 - for remaining bits
 \[s_i = (x_i \oplus y_i) \oplus c_i \]
 \[c_{i+1} = x_i \cdot y_i + (x_i \oplus y_i) \cdot c_i \]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(y_i)</th>
<th>(c_i)</th>
<th>(s_i)</th>
<th>(c_{i+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Ripple-Carry Adder

- Full adder for each bit, $c_0 = 0$

- Worst-case delay
 - from x_0, y_0 to s_n
 - carry must ripple through intervening stages, affecting sum bits
Improving Adder Performance

- **Carry kill:**
 \[k_i = \overline{x_i} \cdot \overline{y_i} \]

- **Carry propagate:**
 \[p_i = x_i \oplus y_i \]

- **Carry generate:**
 \[g_i = x_i \cdot y_i \]

Adder equations

\[s_i = p_i \oplus c_i \]
\[c_{i+1} = g_i + p_i \cdot c_i \]
Fast-Carry-Chain Adder

- Also called Manchester adder

Xilinx FPGAs include this structure
Carry Lookahead

\[c_{i+1} = g_i + p_i \cdot c_i \]

\[c_1 = g_0 + p_0 \cdot c_0 \]

\[c_2 = g_1 + p_1 \cdot (g_0 + p_0 \cdot c_0) = g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0 \]

\[c_3 = g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0 \]

\[c_4 = g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1 + p_3 \cdot p_2 \cdot p_1 \cdot g_0 + p_3 \cdot p_2 \cdot p_1 \cdot p_0 \cdot c_0 \]
Carry-Lookahead Adder

- Avoids chained carry circuit

- Use multilevel lookahead for wider numbers
Other Optimized Adders

- Other adders are based on other reformulations of adder equations
- Choice of adder depends on constraints
 - e.g., ripple-carry has low area, so is ok for low performance circuits
 - e.g., Manchester adder ok in FPGAs that include carry-chain circuits
Adders in Verilog

- Use arithmetic “+” operator

```verilog
wire [7:0] a, b, s;
...
assign s = a + b;
```

```verilog
wire [8:0] tmp_result;
wire c;
...
assign tmp_result = {1'b0, a} + {1'b0, b};
assign c = tmp_result[8];
assign s = tmp_result[7:0];
assign {c, s} = {1'b0, a} + {1'b0, b};
assign {c, s} = a + b;
```
Unsigned Subtraction

- As in decimal

\[
\begin{align*}
 b: & \quad 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \\
 x: & \quad 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \\
 y: & \quad - \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \\
 d: & \quad 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0
\end{align*}
\]
Subtraction Circuits

- For least-significant bits

\[d_0 = x_0 \oplus y_0 \]

\[b_1 = x_0 \cdot y_0 \]

- For remaining bits

\[d_i = (x_i \oplus y_i) \oplus b_i \]

\[b_{i+1} = \overline{x_i \cdot y_i} + (x_i \oplus y_i) \cdot b_i \]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(y_i)</th>
<th>(b_i)</th>
<th>(s_i)</th>
<th>(b_{i+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adder/Subtractor Circuits

- Many systems add and subtract
 - Trick: use complemented borrows
 - HW: use boolean algebra to derive equations on the right from equations on the previous page

Addition

\[s_i = (x_i \oplus y_i) \oplus c_i \]

\[c_{i+1} = x_i \cdot y_i + (x_i \oplus y_i) \cdot c_i \]

Subtraction

\[d_i = (x_i \oplus \overline{y_i}) \oplus \overline{b_i} \]

\[\overline{b_{i+1}} = x_i \cdot \overline{y_i} + (x_i \oplus \overline{y_i}) \cdot \overline{b_i} \]

- Same hardware can perform both
 - For subtraction: complement \(y \), set \(\overline{b_0} = 1 \)
Adder/Subtractor Circuits

- Adder can be any of those we have seen
 - depends on constraints

\[
\begin{array}{cccc}
 y_0 & y_1 & \cdots & y_{n-1} \\
 x_0 & x_1 & \cdots & x_{n-1} \\
 \cdots & \cdots & \cdots & \cdots \\
 x_{n-1} & x_1 & x_0 & y_{n-1} \\
 y_1 & y_0 & \cdots & y_1 \\
 y_0 & y_1 & \cdots & y_{n-1} \\
 c_0 & \text{ovf/unf} & c_n & \text{add/sub} \\
 s_0 & s_1 & \cdots & s_{n-1} \\
 s_{n-1} & s_1 & s_0 & c_0 \\
 s_{n-1}/d_{n-1} & s_1/d_1 & s_0/d_0 & \text{adder}
\end{array}
\]
Subtraction in Verilog

```verilog
module adder_subtracter ( output [11:0] s,
                          output ovf_unf,
                          input [11:0] x, y,
                          input mode );

  assign {ovf_unf, s} = !mode ? (x + y) : (x - y);
endmodule
```
Increment and Decrement

- Adding 1: set $y = 0$ and $c_0 = 1$

$$S_i = x_i \oplus c_i \quad C_{i+1} = x_i \cdot c_i$$

- These are equations for a half adder

- Similarly for decrementing: subtracting 1
Increment/Decrement in Verilog

- Just add or subtract 1

```
wire [15:0] x, s;
...

assign s = x + 1;  // increment x
assign s = x - 1;  // decrement x
```

- Note: 1 (integer), not 1'b1 (bit)
 - Automatically resized
Equality Comparison

- XNOR gate: equality of two bits
 - Apply bitwise to two unsigned numbers

- In Verilog, `x == y` gives a bit result
 - `1'b0` for false, `1'b1` for true

```
assign eq = x == y;
```
Inequality Comparison

- Magnitude comparator for \(x > y \)

\[
\begin{align*}
 x_{n-1} > y_{n-1} \\
 x_{n-1} = y_{n-1} \\
 x_{n-2} > y_{n-2} \\
 x_{n-2} = y_{n-2} \\
 \vdots \\
 x_1 > y_1 \\
 x_1 = y_1 \\
 x_0 > y_0
\end{align*}
\]
Comparison Example in Verilog

- Thermostat with target temperature
- Heater or cooler on when actual temperature is more than 5° from target

```
module thermostat ( output heater_on, cooler_on, 
                   input [7:0] target, actual );
assign heater_on = actual < target - 5;
assign cooler_on = actual > target + 5;
endmodule
```
Scaling by Power of 2

\[x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0 \]

\[2^k \times x = x_{n-1}2^{k+n-1} + x_{n-2}2^{k+n-2} + \cdots + x_02^k + (0)2^{k-1} + \cdots + (0)2^0 \]

- This is \(x \) shifted left \(k \) places, with \(k \) bits of 0 added on the right
 - *logical shift left* by \(k \) places
 - e.g., \(00010110_2 \times 2^3 = 000101100000_2 \)
- Truncate if result must fit in \(n \) bits
 - overflow if any truncated bit is not 0
Scaling by Power of 2

\[x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0 \]

\[x / 2^k = x_{n-1}2^{n-1-k} + x_{n-2}2^{n-2-k} + \cdots + x_k2^0 + x_{k-1}2^{-1} + \cdots + x_02^{-k} \]

- This is \(x \) shifted right \(k \) places, with \(k \) bits truncated on the right
 - *logical shift right* by \(k \) places
 - e.g., \(01110110_2 / 2^3 = 01110_2 \)
- Fill on the left with \(k \) bits of 0 if result must fit in \(n \) bits
Scaling in Verilog

- **Shift-left (<<) and shift-right (>>) operations**
 - result is same size as operand

\[
\begin{align*}
\text{s} &= 00010011_2 = 19_{10} \\
\text{assign } y &= s << 2; \\
\text{y} &= 01001100_2 = 76_{10}
\end{align*}
\]

\[
\begin{align*}
\text{s} &= 00010011_2 = 19_{10} \\
\text{assign } y &= s >> 2; \\
\text{y} &= 000100_2 = 4_{10}
\end{align*}
\]
Unsigned Multiplication

\[xy = x(y_{n-1}2^{n-1} + y_{n-2}2^{n-2} + \cdots + y_02^0) \]
\[= y_{n-1}x2^{n-1} + y_{n-2}x2^{n-2} + \cdots + y_0x2^0 \]

- \(y_i x 2^i \) is called a partial product
 - if \(y_i = 0 \), then \(y_i x 2^i = 0 \)
 - if \(y_i = 1 \), then \(y_i x 2^i \) is \(x \) shifted left by \(i \)

- Combinational array multiplier
 - AND gates form partial products
 - adders form full product
Unsigned Multiplication

- Adders can be any of those we have seen
- Optimized multipliers combine parts of adjacent adders
Product Size

- Greatest result for n-bit operands:

$$ (2^n - 1)(2^n - 1) = 2^{2n} - 2^n - 2^n + 1 = 2^{2n} - (2^{n+1} - 1) $$

- Requires $2n$ bits to avoid overflow
- Multiplying n-bit and m-bit operands
 - requires $n + m$ bits

```verilog
wire [ 7:0] x; wire [13:0] y; wire [21:0] p;
...

assign p = {14'b0, x} * {8'b0, y};

assign p = x * y; // implicit resizing
```
Other Unsigned Operations

- Division, remainder
 - More complicated than multiplication
 - Large circuit area, power
- Complicated operations are often performed sequentially
 - in a sequence of steps, one per clock cycle
 - cost/performance/power trade-off
Signed Integers

- Positive and negative numbers (and 0)
- n-bit *signed magnitude* code
 - 1 bit for sign: 0 \Rightarrow +, 1 \Rightarrow –
 - $n - 1$ bits for magnitude
- Signed-magnitude rarely used for integers now
 - circuits are too complex
- Use *2s-complement* binary code
2s-Complement Representation

\[x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0 \]

- Most-negative number
 - 1000...0 = \(-2^{n-1}\)
- Most-positive number
 - 0111...1 = +2^{n-1} - 1
- \(x_{n-1} = 1 \Rightarrow \text{negative, }\)
- \(x_{n-1} = 0 \Rightarrow \text{non-negative}\)
 - Since \(2^{n-2} + \cdots + 2^0 = 2^{n-1} - 1\)
2s-Complement Examples

- **00110101**
 - \(= 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0 = 53\)

- **10110101**
 - \(= -1 \times 2^7 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0\)
 - \(= -128 + 53 = -75\)

- **00000000** = 0
- **11111111** = -1
- **10000000** = -128
- **01111111** = +127
Signed Integers in Verilog

- Use signed vectors

```verilog
wire signed [7:0] a;
reg signed [13:0] b;
```

- Can convert between signed and unsigned interpretations

```verilog
wire [11:0] s1;
wire signed [11:0] s2;
...
assign s2 = $signed(s1);  // s1 is known to be less than 2**11
...
assign s1 = $unsigned(s2); // s2 is known to be nonnegative
```
Octal and Hex Signed Integers

- Don’t think of signed octal or hex
 - Just treat octal or hex as shorthand for a vector of bits
- E.g., \(844_{10}\) is \(001101001100\)
 - In hex: \(0011\ 0100\ 1100\ ⇒ \ 34C\)
- E.g., \(-42_{10}\) is \(1111010110\)
 - In octal: \(1\ 111\ 010\ 110\ ⇒ 1726\) (10 bits)
Resizing Signed Integers

- To extend a non-negative number
 - Add leading 0 bits
 - e.g., $53_{10} = 00110101 = 000000110101$

- To truncate a non-negative number
 - Discard leftmost bits, provided
 - discarded bits are all 0
 - sign bit of result is 0
 - E.g., 41_{10} is 00101001
 - Truncating to 6 bits: 101001 — error!
Resizing Signed Integers

- To extend a negative number
 - Add leading 1 bits
 - See textbook for proof
 - e.g., $-75_{10} = 10110101 = 111110110101$
- To truncate a negative number
 - Discard leftmost bits, provided
 - discarded bits are all 1
 - sign bit of result is 1
Resizing Signed Integers

- In general, for 2s-complement integers
 - Extend by replicating sign bit
 - *sign extension*
 - Truncate by discarding leading bits
 - Discarded bits must all be the same, and the same as the sign bit of the result

```verilog
wire signed [7:0] x;
wire signed [15:0] y;
...
assign y = {{8{x[7]}}, x};
assign y = x;
...
assign x = y;
```
Signed Negation

- Complement and add 1
 - Note that $\overline{x_i} = 1 - x_i$

$$\overline{x} + 1 = -(1 - x_{n-1})2^{n-1} + (1 - x_{n-2})2^{n-2} + \cdots + (1 - x_0)2^0 + 1$$

$$= -2^{n-1} + x_{n-1}2^{n-1} + 2^{n-2} - x_{n-2}2^{n-2} + \cdots + 2^0 - x_02^0 + 1$$

$$= -(x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0)$$

$$- 2^{n-1} + (2^{n-2} + \cdots + 2^0) + 1$$

$$= -x - 2^{n-1} + 2^{n-1} = -x$$

- E.g., 43 is 00101011
 so -43 is 11010100 + 1 = 11010101
Signed Negation

- What about negating -2^{n-1}?
 - $1000\ldots00 \Rightarrow 0111\ldots11 + 1 = 1000\ldots00$
 - Result is -2^{n-1}!

- Recall range of n-bit numbers is not symmetric
 - Either check for overflow, extend by one bit, or ensure this case can’t arise

- In Verilog: use $-$ operator
 - E.g., `assign y = -x;`
Signed Addition

\[
x = -x_{n-1}2^{n-1} + x_{n-2}...0 \quad \quad y = -y_{n-1}2^{n-1} + y_{n-2}...0
\]

\[
x + y = -(x_{n-1} + y_{n-1})2^{n-1} + x_{n-2}...0 + y_{n-2}...0 \quad \quad \text{yields } c_{n-1}
\]

- Perform addition as for unsigned
 - Overflow if \(c_{n-1} \) differs from \(c_n \)
 - See textbook for case analysis
- Can use the same circuit for signed and unsigned addition
Signed Addition Examples

<table>
<thead>
<tr>
<th>0 0</th>
<th>0 0 0 0 0 0 0 0 0</th>
<th>1 1</th>
<th>1 0 0 0 0 0 0 0 1</th>
<th>0 0</th>
<th>0 0 0 0 0 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>72:</td>
<td>0 1 0 0 1 0 0 0 0</td>
<td>−63:</td>
<td>1 1 0 0 0 0 0 0 1</td>
<td>−42:</td>
<td>1 1 0 1 0 1 1 0 0</td>
</tr>
<tr>
<td>49:</td>
<td>0 0 1 1 0 0 0 0 1</td>
<td>−32:</td>
<td>1 1 1 0 0 0 0 0 0</td>
<td>8:</td>
<td>0 0 0 0 1 0 0 0 0</td>
</tr>
<tr>
<td>121:</td>
<td>0 1 1 1 1 0 0 0 1</td>
<td>−95:</td>
<td>1 0 1 0 0 0 0 0 1</td>
<td>−34:</td>
<td>1 1 0 1 1 1 1 0 0</td>
</tr>
</tbody>
</table>

no overflow

<table>
<thead>
<tr>
<th>0 1</th>
<th>0 0 1 0 0 0 0 0 0</th>
<th>1 0</th>
<th>0 0 0 0 0 0 0 0 0</th>
<th>1 1</th>
<th>1 1 1 1 0 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>72:</td>
<td>0 1 0 0 1 0 0 0 0</td>
<td>−63:</td>
<td>1 1 0 0 0 0 0 0 1</td>
<td>42:</td>
<td>0 0 1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>105:</td>
<td>0 1 1 0 1 0 0 1 1</td>
<td>−96:</td>
<td>1 0 1 0 0 0 0 0 0</td>
<td>−8:</td>
<td>1 1 1 1 1 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>1 0 1 1 0 0 0 0 1</td>
<td></td>
<td>0 1 1 0 0 0 0 0 1</td>
<td>34:</td>
<td>0 0 1 0 0 0 1 0 0</td>
</tr>
</tbody>
</table>

positive overflow

negative overflow

no overflow
Signed Addition in Verilog

- Result of + is same size as operands

```verilog
wire signed [11:0] v1, v2;
wire signed [12:0] sum;
...
assign sum = {v1[11], v1} + {v2[11], v2};
...
assign sum = v1 + v2; // implicit sign extension
```

- To check overflow, compare signs

```verilog
wire signed [7:0] x, y, z;
wire ovf;
...
assign z   = x + y;
```
Signed Subtraction

\[x - y = x + (-y) = x + \bar{y} + 1 \]

- Use a 2's-complement adder
- Complement \(y \) and set \(c_0 = 1 \)
Other Signed Operations

- Increment, decrement
 - same as unsigned

- Comparison
 - =, same as unsigned
 - >, compare sign bits using $x_{n-1} \cdot y_{n-1}$

- Multiplication
 - Complicated by the need to sign extend partial products
 - Refer to Further Reading
Scaling Signed Integers

- Multiplying by 2^k
 - logical left shift (as for unsigned)
 - truncate result using 2s-complement rules

- Dividing by 2^k
 - arithmetic right shift
 - discard k bits from the right, and replicate sign bit k times on the left
 - e.g., $s = \text{"11110011"}$ \(\rightarrow -13 \)

 \[
 \text{shift_right}(s, 2) = \text{"11111100"} \quad \rightarrow -13 / 2^2
 \]
Fixed-Point Numbers

- Many applications use non-integers
 - especially signal-processing apps
- Fixed-point numbers
 - allow for fractional parts
 - represented as integers that are implicitly scaled by a power of 2
 - can be unsigned or signed
Positional Notation

- In decimal
 \[10.24_{10} = 1 \times 10^1 + 0 \times 10^0 + 2 \times 10^{-1} + 4 \times 10^{-2} \]

- In binary
 \[101.01_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 5.25_{10} \]

- Represent as a bit vector: 10101
 - binary point is implicit
Unsigned Fixed-Point

- n-bit unsigned fixed-point
 - m bits before and f bits after binary point

$$x = x_{m-1}2^{m-1} + \cdots + x_02^0 + x_{-1}2^{-1} + \cdots + x_{-f}2^{-f}$$

- Range: 0 to $2^m - 2^{-f}$
- Precision: 2^{-f}
- m may be ≤ 0, giving fractions only
 - e.g., $m = -2$: 0.0001001101
Signed Fixed-Point

- n-bit signed 2s-complement fixed-point
 - m bits before and f bits after binary point

\[
x = -x_{m-1} 2^{m-1} + \ldots + x_0 2^0 + x_{-1} 2^{-1} + \ldots + x_{-f} 2^{-f}
\]

- Range: -2^{m-1} to $2^{m-1} - 2^{-f}$
- Precision: 2^{-f}
- E.g., 111101, signed fixed-point, $m = 2$
 - $11.1101_2 = -2 + 1 + 0.5 + 0.25 + 0.0625$
 - $= -0.1875_{10}$
Choosing Range and Precision

- Choice depends on application
- Need to understand the numerical behavior of computations performed
 - some operations can magnify quantization errors
- In DSP
 - fixed-point range affects dynamic range
 - precision affects signal-to-noise ratio
- Perform simulations to evaluate effects
Fixed-Point in Verilog

- Use vectors with implied scaling
 - Index range matches powers of weights
 - Assume binary point between indices 0 and –1

```verilog
module fixed_converter ( input [5:-7] in, output signed [7:-7] out );
    assign out = {2'b0, in};
endmodule
```
Fixed-Point Operations

- Just use integer hardware
 - e.g., addition:
 \[x + y = (x \times 2^f + y \times 2^f) / 2^f \]

- Ensure binary points are aligned
Summary

- **Unsigned:** $x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0$
- **Signed:** $x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \cdots + x_02^0$
- Octal and Hex short-hand
- Operations: resize, arithmetic, compare
- Arithmetic circuits trade off speed/area/power
- Fixed- and floating-point non-integers
- Gray codes for position encoding