Review and AVR Architecture

Microcontrollers and AVR Specific Information

Instructor: Tinoosh Mohsenin

Credit to Dr. Robucci for original slides
Background on general purpose computer

- **ENIAC:** Electronic Numerical Integrator And Computer was the first general-purpose computer
 - Built in Univ. of Pennsylvania
 - Funded partially by US Army 1943 before ending WWII
- **Von Neumann computer**
 - 1944

Source: wiki
CPU
- Unit that fetches and processes a set of general-purpose instructions

Microprocessor
- A CPU on a single chip. It may also have other units (e.g. caches, floating point processing)

Microcomputer
- A microprocessor + I/O + memory+ etc are put together to form a small computer for applications like data collection, or control application.

Microcontroller
- A microcomputer on a single chip. It brings together the microprocessor core and a rich collection of peripherals and I/O capability.
Microcontroller (MCU)

- Common peripherals include
 - Serial communication devices
 - Timers, counters, pulse width modulators
 - Analog-to-digital and digital-to-analog convertors
- Particularly suited for use in embedded systems
 - Real-time control applications
 - On-chip program memory and devices
- Enables single-chip system implementation
 - Smaller and lower-cost products
- Examples: Motorola 68HC11xx, HC12xx, HC16xx, Intel 8051, 80251, PIC 16F84, PIC18, ARM9, ARM7, Atmel AVR, etc.
Alternatives for MCU

- **Discrete ICs**
 - Dedicated digital circuit
 - Can use various ICs for functions (AND, OR, etc.)

- **PLD (Programmable Logic Device)**
 - Contains various user selected logic functions
 - Results in more compact system compared to dedicated digital circuits

- **ASIC (Application Specific Integrated Circuit)**
 - Specific optimized implementation
Why use Microcontrollers?

- Peripheral loaded
 - ADC, DAC, GPIOs, Serial Interfaces
- Cheap
 - ~$1 for 8-bit processor
- Low Power
 - ~300μA operation (1 AA battery for 275 days)
 - <1μA sleep (1 AA battery for 225 years)
- Programmable
 - Assembly or C
AVR Architecture

- **RISC Harvard Architecture**
 - RISC vs. CISC
 - Harvard vs. Von Neumann
 - Separate program and data memory bus
 - On-chip program memory → Flash memory
 - On-chip data memory → RAM and EEPROM
- **32 x 8 general purpose registers**
- **Internal and external interrupt sources**
- **On-chip RC clock oscillator**
- **Variety of I/O, Programmable I/O Lines**
General 8-Bit AVR Architecture

- Important block diagram to review
- ALU supports arithmetic and logic operations between registers or between a constant and a register.
- ALU connection with registers makes ALU execution with registers in one cycle
Program counter and instruction
Pipeline

• AVR has 2-stage pipeline (Fetch, Execute)
 ▫ **Decode occurs in IF cycle**
• While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle.
• Most instructions execute in a single clock cycle
 ▫ **Some might take 2 or more cycles**

![Figure 6-3. Single Cycle ALU Operation](image-url)
ATmega 169P

- Datasheet can be found at:
 - From megaAVR family
 - Families – Similar group of devices
 - “P” of 169P means “Low Power”
 - “16” in 169P means 16k program memory
 - “9” in 169P means 9th design revision
Atmega 169P

Figure 2-1. Block Diagram

Source: Atmega 169P datasheet
Program Memory

- Atmega 169P contains 16k bytes Flash memory
 - Program storage
 - Boot program section and Application Program Section
- All AVR instructions are 16 or 32 bits wide
- Flash organized as 8k*16
- $8k = 2^{13} \rightarrow 13$ bits needed to address program memory
 - Program Counter = 13 bits
Data Memory

- Entire data memory space can be accessed as memory
 - Register instructions faster on real registers
- General Purpose Registers
 - 32, labeled R0-R31
 - Called Register File
 - Can be used in instructions
 - i.e. ADD R2, R3
- The lower 1,280 data memory locations address both the Register File, the I/O memory, Extended I/O memory, and the internal data SRAM. The first 32 locations address the Register File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O memory, and the next 1024 locations address the internal data SRAM.
- Refer to section 7.2.1
SRAM Access Time

- 2 Cycles to access SRAM
- Address pointers (Registers X,Y,Z) used for addressing
- First Cycle
 - Register file accessed
 - ALU calculates address
- Second Cycle
 - Calculated address accesses SRAM location
- Refer to section 7.2.1
EEPROM Space

- EEPROM
 - Electrically erasable programmable read-only memory
 - 100k write/erase cycles for a lifetime
 - 512 bytes
- Persists after power-down
- Reads and Writes will halt CPU
- For more information on EEPROM Refer to the slides Memory Types
AVR Reset resources

The ATmega169P has five sources of reset:

1. Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold (VPOT).
2. External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse length.
3. Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled.
4. Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled.
5. JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the scan chains of the JTAG system. Refer to the section ”IEEE 1149.1 (JTAG) Boundaryscan” on page 259 for details.