What is an Embedded System?

- **Loose Definition:**
 - A system which is part of a larger system

- **What does that actually mean**
 - **Hardware/Software co-design**
 - Usually with specific purpose
 - Usually special set of constraints (size/power/time)
 - **From Wiki:**
 - An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints. It is embedded as part of a complete device often including hardware and mechanical parts. Embedded systems control many devices in common use today.

- **Can be based on** microcontroller, DSP, ASICs, even standard Microprocessor unit (MPU)
Examples

*Image credit to Fitbit, Arduino, Google, ford, we-online, Acorn Instruments, Raspberry Pi and used under Fair Use law. I do not claim ownership to any of these images.
Market Share

- Embedded industry represents about $17 billion in revenue per year
 - Compare to $19 B for cellphone processors
 - Compare to ~$25 B for non-mobile, non-embedded MPUs

- Embedded Systems outnumber other MPUs by over 100:1

Data pulled from icinsights.com
Trends in Cellphone Chip Integration

- Chip integration is increasing every generation
- Cell phone size is decreasing
- Users want more features every generation
- Power budget is very limited

Y. Neuvo, ISSCC 2004
Cellphone chips have multiple processing cores and support multiple applications and features

- Ex: Integrated Transceiver: WiFi (802.11a/b/g), Bluetooth, FM
Smart Health Monitoring: Analysis & Delivery

- **Wearable medical monitoring systems**
 - Reliable and seamless monitoring integrated into patients daily life routine
- **Data analysis**
 - Real-time data analysis and diagnosis for efficient healthcare delivery
- **Data delivery**
 - Real time data transmission to healthcare providers (e.g. nurses, primary care physicians, and first responders) through networks and immediate therapy through smart drug delivery
Military & Aerospace Telemedicine

Ultrasound with DARPA-Vuzix Augmented Reality Goggles

Field Satellite Comm. Operator

SATCOM

Gilat GobaLight Mobile VSAT

Wideband Global SATCOM

Local Teleradiology

Combat Support Hospital

Global Teleradiology

Walter Reed National Military Medical Center or Fort Detrick

First Responder (Line Medic)

WPAN and WLAN

Wireless Integrated Ultrasound System

Point of Injury
Key Objectives

- High performance: 10-100 GOPS
- Energy efficiency: 100-1000 GOPS/W
- Area efficiency: 10-100 GOPS/mm²
- Programmability
Microprocessor Based Embedded Systems

- Microprocessor
 - Bus Logic (Address, Data, Control)
 - Minimal Embedded System
 - Clock/Time
 - Watchdog Timer
 - Digital I/O
 - Program ROM
 - Data RAM

- I/O Interfaces
- Communications
- DAC
- ADC
- Other Peripherals

Embedded into microcontrollers
Typical BUS structure comprising Address, Data and control signals
Data movement over an 8-bit Bus

Example:

For (i=0; i<8; i++)
{
 printf("%i", a[i]);
}
Microcontroller block diagram
Big Endian
In big endian, you store the most significant byte in the smallest address

Little Endian
In little endian, you store the least significant byte in the smallest address
Memory-General Concepts

- **A memory is an array of storage locations**
 - Each with a unique address
 - Like a collection of registers, but with optimized implementation
- **Address is unsigned-binary encoded**
 - n address bits ⇒ 2^n locations
- **All locations the same size**
 - $2^n \times m$ bit memory

<table>
<thead>
<tr>
<th>Address</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>2^{n-2}</th>
<th>2^{n-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Memory Sizes

- Use power-of-2 multipliers
 - Kilo (K): $2^{10} = 1,024 \approx 10^3$
 - Mega (M): $2^{20} = 1,048,576 \approx 10^6$
 - Giga (G): $2^{30} = 1,073,741,824 \approx 10^9$

- Example
 - $32K \times 32$-bit memory
 - Capacity = $1,024K = 1$Mbit
 - Requires 15 address bits

- Size is determined by application requirements
Basic Memory Operations

- **a inputs:** unsigned address
- **d_in and d_out**
 - Type depends on application
- **Write operation**
 - \(en = 1, \ wr = 1 \)
 - \(d_{\text{in}} \) value stored in location given by address inputs
- **Read operation**
 - \(en = 1, \ wr = 0 \)
 - \(d_{\text{out}} \) driven with value of location given by address inputs
- **Idle:** \(en = 0 \)
The example places the integer value 10 in binary into some location e.g address 3000

```
Int myVar=10
Int* myVarPtr=&myVar // take the //address of myVar assign it to the //pointer variable myVarPtr
```

When interpreted by the system, the code directs the system to set aside another memory word to hold the address.
Why Microcontrollers?

- Peripheral loaded
 - ADC, DAC, GPIOs, Serial Interfaces
- Cheap
 - ~$1 for 8-bit processor
- Relatively Simple and Low Power
 - ~300μA operation (1 AA battery for 275 days, depending on the application)
 - <1μA sleep (1 AA battery for 225 years)
- Programmable
 - Assembly or C
Our Microcontroller

- **AVR Butterfly**
 - ATMEGA 169PV chip
 - Built-in peripherals
 - 120 segment LCD Screen
 - Joystick
 - Piezo element – sounds
- **Programmer**
 - AVR Dragon
- These boards will be used for projects and discussions