Timer in AVR Micro-Controller

Required for Homework-4
Also Refer Chapter 14 and 15
Timers in AVR Micro-Controller

- Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
- In an 8-bit timer, the register used is 8-bit wide whereas in 16-bit timer, the register width is of 16 bits.
- This means that the 8-bit timer is capable of counting $2^8=256$ steps from 0 to 255
- What happens once they reach their MAX? Does the program stop executing?
 - It returns to its initial value of zero. We say that the timer/counter overflows.
Basic Concept of Timer:

\[\text{Time Period} = \frac{1}{\text{Frequency}} \]

\[\text{Timer Count} = \frac{\text{Required Delay}}{\text{Clock Time Period}} - 1 \]

Required Delay = 10 ms and Clock Time Period = 0.00025 ms (4MHz), and you get **Timer Count = 39999**.

Assuming F_CPU = 4 MHz and a 16-bit timer (MAX = 65535), and substituting in the above formula, we can get a maximum delay of 16.384 ms.

Now what if we need a greater delay, say 20 ms?
Prescaler

- Frequency Division is called as Pre-Scaling

- The actual F_CPU remains the same (at 4 MHz in this case). So basically, we *derive* a frequency from it to run the timer.

- **There is a trade-off between resolution and duration.**

- Overall duration measurement ↑, Resolution ↑ thus accuracy is ↓

- Always choose prescaler which gives the counter value within the feasible limit (255 or 65535) and the counter value should always be an integer.
The simplest one being the LED flasher. Let’s say, we need to flash an LED every 6 ms and we are have a CPU clock frequency of 32 kHz.

For a delay of 6 ms, we need a timer count of 191. This can easily be achieved with an 8-bit counter (MAX = 255).

We need help of following Registers:
 - TCNT0 Register
 - TCCR0 Register
Problem Statement

- **Timer/Counter Register**
 - Bit 7, 6, 5, 4, 3, 2, 1, 0 – TCNT0[7:0] for Timer/Counter
 - Read/Write: R/W
 - Initial Value: 0 0 0 0 0 0 0 0

- **Timer/Counter Control Register**

- **Clock Select Bits, CS02:00**, we set the timer up by choosing proper prescaler.
- **FOC0A**: Force Output Compare A
- **Bit 6, 3 – WGM01:0**: Waveform Generation Mode
```c
#include <avr/io.h>

void timer0_init()
{
    // set up timer with no prescaling
    TCCR0 |= (1 << CS00);

    // initialize counter
    TCNT0 = 0;
}

int main(void)
{
    // connect led to pin PC0
    DDRC |= (1 << 0);

    // initialize timer
    timer0_init();

    // loop forever
    while(1)
    {
        // check if the timer count reaches 191
        if (TCNT0 >= 191)
        {
            PORTC ^= (1 << 0);  // toggles the led
            TCNT0 = 0;        // reset counter
        }
    }
}
```

Courtesy: http://maxembedded.com/