Section 3 - Divisibility

• **Definition:** If n and d are integers and $d \neq 0$, then n is divisible by d provided $n = d \cdot k$ for some integer k.

• Alternatively, we say:

 - n is a multiple of d
 - d is a factor of n
 - d is a divisor of n
 - d divides n (denoted with $d \mid n$).
Properties of Divisibility

• **Divisors of 0:** If k is a non-zero integer, then k divides 0 since $0 = k \cdot 0$.

• **Positive Divisors of a Positive Number:**
 If a and b are positive integers and $a \mid b$, is $a \leq b$?
 Yes. Since $a \mid b$, $\exists k \in \mathbb{Z}$, such that $b = a \cdot k$.
 Moreover, $0 < k$, since a and b are, so $1 \leq k$.
 Thus: $a = a \cdot 1 \leq a \cdot k = b$.
 Therefore $a \leq b$.

• **Divisors of 1:** The only divisors of 1 are 1 and -1.
Divisibility of Algebraic Terms

• Let a and b be integers.

• Does $3 \mid (3a + 3b)$?
 Yes, since $(3a + 3b) = 3(a + b)$ and $(a + b) \in \mathbb{Z}$.

• Does $5 \mid 10ab$?
 Yes again, since $10ab = 5(2ab)$ and $(2ab) \in \mathbb{Z}$.

• If $m \in \mathbb{Z}$ and $m \mid (a + b)$, does $m \mid a$ and $m \mid b$?
 No. $2 \mid 8$ but $2 \nmid 5$ and $2 \nmid 3$.
Divisibility and Non-divisibility

• There is another way to test for divisibility: If \(d \mid n \), there is integer \(k \) with \(n = dk \), then \(k = (n/d) \). So, if \((n/d) \) is an integer, then \(d \mid n \).

• This leads to an easy way to test for non-divisibility: If \((n/d) \) is not an integer, then \(d \) cannot divide \(n \).

• Examples:

\[
3 \mid 12 \text{ since } 12/3 = 4 \in \mathbb{Z}.
\]
\[
5 \nmid 12 \text{ since } 12/5 = 2.4 \notin \mathbb{Z}.
\]
Proving Properties of Divisibility

- **Theorem:** *Transitivity of Divisibility*
 For all $a, b, c \in \mathbb{Z}$, if $a \mid b$ and $b \mid c$, then $a \mid c$.

- **Proof:** Let a, b, and c be integers, and assume $a \mid b$ and $b \mid c$. Thus there exist $m, n \in \mathbb{Z}$ with $b = ma$ and $c = nb$.

 Now, $c = nb = n(ma) = (nm)a$. Since $m, n \in \mathbb{Z}$, we have $nm \in \mathbb{Z}$, therefore $a \mid c$. QED

- **Example:** $3 \mid 9$ and $9 \mid 909$, therefore $3 \mid 909$.
Divisibility by a Prime

• **Theorem:** Every positive integer greater than 1 is divisible by a prime number.

• **Proof:** Let \(n \in \mathbb{Z} \) with \(n > 1 \). Then either \(n \) is prime or composite. If \(n \) is prime, it is divisible by itself, and we are done.

 Now, assume \(n \) is composite. Thus there are integers (greater than 1) \(a \) and \(b \), such that \(n = ab \). If \(a \) is prime, we are done. If not, factor \(a \), Will we eventually get to a prime factor?
Standard Factored Form

• **Definition:** Given any integer \(n > 1 \), the *standard factored form* of \(n \) is an expression of the form:
 \[n = (p_1)^{e_1} \cdot (p_2)^{e_2} \cdot (p_3)^{e_3} \cdots (p_k)^{e_k}, \]
 where \(k \) is a positive integer; \(p_1, p_2, \ldots, p_k \) are prime numbers with \(p_1 < p_2 < \ldots < p_k \); and \(e_1, e_2, \ldots, e_k \) are positive integers.

• **Example:** \[3300 = 33 \cdot 100 = 3 \cdot 11 \cdot 10^2 = 2^2 \cdot 3 \cdot 5^2 \cdot 11. \]
Unique Factorization Theorem

- **Theorem:** Given any integer $n > 1$, there exist positive integer k; prime numbers $p_1, p_2, ..., p_k$; and positive integers $e_1, e_2, ..., e_k$, with

$$n = (p_1)^{e_1} \cdot (p_2)^{e_2} \cdot (p_3)^{e_3} \cdots (p_k)^{e_k},$$

and any other expression of n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors appear.

- This is also referred to as the *Fundamental Theorem of Arithmetic*.
Fundamental Theorem of Arithmetic

• Theorem: Every positive integer greater than 1 has a unique factorization as the product of primes.

• Proof: (outline)

 1. Apply the previous theorem to each composite factor encountered.

 2. Sort the final listing to get the prime factors in increasing (decreasing?) numeric order.

 3. Rewrite using exponents.