Chapter 1. Symbolic Logic

- Logical Form and Equivalence
- Conditional Statements
- Valid and Invalid Arguments
- Digital Logic Circuits (Boolean Polynomials)
Logic of Compound Statements

- A *statement* (or *proposition*) is a sentence that is true (T) or false (F), but not both or neither.
- Examples:
 - Today is Monday.
 - x is even and $x > 7$.
 - If $x^2 = 4$, then $x = 2$ or $x = -2$.
Counterexamples

• If a sentence cannot be judged to be T or F or is not even a sentence, it cannot be a statement.

• Examples:

 Open the door! (*imperative*)
 Did you open the door? (*interrogative*)
 If $x^2 = 4$. (*fragment*)
Compound Statements

• Denote statements using the symbols p, q, r, ...
• Denote the operations \land, \lor, \neg, \rightarrow (to be defined shortly), where:

 \[
 p \land q - \text{conjunction of } p \text{ and } q \ (p \text{ and } q);
 \]

 \[
 p \lor q - \text{disjunction of } p \text{ and } q \ (p \text{ or } q);
 \]

 \[
 \neg p - \text{negation of } p \ (\text{not } p);
 \]

 \[
 p \rightarrow q - \text{implication of } p \text{ and } q \ (p \text{ implies } q);
 \]
Compound Statements (cont’d.)

- A Compound statement (or statement form) is a statement which includes at least one operation and one other “atomic” statement.
- For example, “$x = 7$ and $y = 2$” is a compound statement based on the “atomic” statements $p = “x = 7”$ and $q = “y = 2”$.
- In this instance, we can symbolize the compound statement as $r = p \land q$.
Compound Statements (cont’d.)

- The *Truth Table* of a compound statement is the collection of all the output truth values corresponding to all possible combinations of input truth values of the atomic statements.
- Since each atomic statement can take on 1 of 2 values, 2 inputs have 4 combinations, 3 inputs have 8, 4 inputs have 16, 5 inputs have 32, etc.
Logical Operations

• Negation: \[p \quad \sim p \]
 \[
 \begin{array}{cc}
 T & F \\
 F & T \\
 \end{array}
 \]

• Conjunction: \[p \quad q \quad (p \land q) \]
 \[
 \begin{array}{ccc}
 T & T & T \\
 T & F & F \\
 F & T & F \\
 F & F & F \\
 \end{array}
 \]

• Disjunction: \[p \quad q \quad (p \lor q) \]
 \[
 \begin{array}{ccc}
 T & T & T \\
 T & F & T \\
 F & T & T \\
 F & F & F \\
 \end{array}
 \]
Example: \((p \lor q) \land \sim r\)

- Proceed from left to right:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(p \lor q)</th>
<th>\sim r</th>
<th>((p \lor q) \land \sim r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

1.1.8
Logical Equivalence

• Two *compound statements* are logically equivalent if they have the same truth table. We denote this as $p \equiv q$.

• \[
\begin{array}{c|c|c|c}
 p & \sim p & \sim(\sim p) \\
 \hline
 T & F & T \\
 F & T & F \\
\end{array}
\]
 hence $p \equiv \sim(\sim p)$.

• $\sim(p \land q) \equiv \sim p \land \sim q$?
 No, since $\sim(T \land F) \equiv T$, but $(\sim T \land \sim F) \equiv F$.

Tautology & Contradiction

- A statement whose truth table is all “T” is called a tautology, denoted as $p \equiv t$.
- A statement whose truth table is all “F” is called a contradiction, denoted as $p \equiv c$.
- Clearly, $\neg t \equiv c$ and $\neg c \equiv t$.
- Are all logical statements either tautology or contradiction?
Algebra of Symbolic Logic

- **Commutative Laws:**
 \[p \land q \equiv q \land p \]
 \[p \lor q \equiv q \lor p \]

- **Associative Laws:**
 \[(p \land q) \land r \equiv p \land (q \land r) \]
 \[(p \lor q) \lor r \equiv p \lor (q \lor r) \]

- **Distributive Laws:**
 \[p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \]
 \[p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \]
Algebra of Symbolic Logic

• Identity Laws:

\[p \land t \equiv p \]
\[p \lor c \equiv p \]

• Negation Laws:

\[p \land \neg p \equiv c \]
\[p \lor \neg p \equiv t \]

• Double Negative Laws: \(\neg(\neg p) \equiv p \)

• Negations of \(t \) and \(c \):

\[\neg t \equiv c \]
\[\neg c \equiv t \]
Algebra of Symbolic Logic

• Idempotent Laws: \(p \land p \equiv p \) \(p \lor p \equiv p \)

• DeMorgan’s Laws:
 \[\neg(p \land q) \equiv \neg p \lor \neg q \]
 \[\neg(p \lor q) \equiv \neg p \land \neg q \]

• Universal Bound Laws: \(p \land c \equiv c \) \(p \lor t \equiv t \)

• Absorption Laws:
 \[p \land (p \lor q) \equiv p \]
 \[p \lor (p \land q) \equiv p \]