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Machine Learning Exercises on
1-D Electromagnetic Inversion

Ergun Simsek , Senior Member, IEEE

Abstract— This work aims to enhance our fundamental under-
standing of how the measurement setup that is used to generate
training and testing data sets affects the accuracy of the machine
learning algorithms that attempt to solve electromagnetic inver-
sion problems solely from data. A systematic study is carried
out on a 1-D semi-inverse electromagnetic problem, which is
estimating the electrical permittivity values of a planarly layered
medium with fixed layer thicknesses assuming different receiver–
transmitter antenna combinations in terms of location and num-
bers. The accuracy of the solutions obtained with four machine
learning methods, including neural networks, is compared with a
physics-based solver deploying the Nelder–Mead simplex method
to achieve the inversion iteratively. Numerical results show
that: 1) deep-learning outperforms the other machine learning
techniques implemented in this study; 2) increasing the number
of antennas and placing them as close as possible to the domain
of interest increase inversion accuracy; 3) for neural networks,
training data sets created on random grids lead to more efficient
learning than the training data sets created on uniform grids;
and 4) multifrequency training and testing with a few antennas
can achieve more accurate inversion than single-frequency setups
deploying several antennas.

Index Terms— Deep learning, electromagnetic inversion,
machine learning, optimization.

I. INTRODUCTION

IN THE last decade, machine learning has received enor-
mous interest from scientists and engineers from almost

all disciplines. In addition to machine learning’s potential
in solving complex problems, free of charge programming
languages and platforms for cloud computing and data storage,
an open-source culture of the machine learning community,
and affordability of graphics processing units (GPUs) are a
few of the many possible factors driving this growing interest.

Machine learning has become a popular subject in
the computational electromagnetics (CEM) society as well.
Researchers have proposed using machine learning to solve
advanced CEM problems in device design [1]–[3], material
characterization [4], geophysical prospecting [5], [6], and
electromagnetic inversion [3], [5], [7]–[16], which attempts
to estimate the distribution of physical properties in a domain
of interest from antenna measurements collected outside of
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that domain. Since the inversion problems are nonlinear,
nonunique, and ill-posed [17], [18], electromagnetic inversion
has been one of the most challenging subjects studied by the
CEM society over the past decades. According to the recent
studies [3], [5], [8]–[14], deep learning, a machine learning
system deploying neural networks (NNs), has the potential to
make substantial improvements in this area.

Even though there are some studies on 3-D electromagnetic
inversion problems, the majority of the recent studies focus
on 2-D electromagnetic inversion due to its relative simplic-
ity. In most of these studies, the domain of interest is a
square, and around this square are multiple antennas placed
uniformly over a circle. The radius of this circle is chosen
carefully so that no antenna is present very close to the
domain of interest. The number of antennas is determined
according to the Nyquist sampling theorem, i.e., the spa-
tial distance between two neighboring receiver antennas is
about a half wavelength or less. Another common element
among these studies is that the main focus is the design of
the neural network. They assume the measurement setup is
ideal, probably based on the past experiences gained during
traditional electromagnetic inversion solver development and
the majority of them use deep learning [5], [8]–[14]. However,
electromagnetic inversion can also be implemented using other
machine learning techniques, such as linear regression (LR),
k-nearest neighbor (kNN), and random forest. Thus, when
we compare the current best practices in machine learning
and electromagnetic inversion methods, we come up with
some very fundamental questions. For example, can machine
learning techniques other than deep learning achieve similar
accuracy in electromagnetic inversion or is deep-learning
significantly better than the other methods and do we have
to use it for the most accurate electromagnetic inversion
implementation? We know that the waveforms are extremely
complex in the near-field, but the machines might learn from
this complexity, so can bringing antennas closer to the search
domain improve the accuracy or should we put them at least
half-wavelength far from the domain of interest? How does
the accuracy change when we change the number of antennas?
Does multifrequency training bring any advantage compared
to single-frequency training?

To find some clues that might help with answering these
questions, here, we study a simplified 1-D electromagnetic
inversion problem: estimating the electrical permittivity pro-
file of a multilayered, lossless medium with fixed layer
thicknesses. First, we provide an example case where the
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Fig. 1. Five-layer medium where the three inner layers are λ/4 thick. Top
layer is air with a relative electrical permittivity of 1. Four different receiver
(Rx)–transmitter (Tx) antenna combinations are considered: in the first three
configurations, there is only one Tx and it is in the top layer; receivers are in
(a) top layer, (b) bottom layer, (c) different layers and distributed vertically;
and (d) one Rx and one Tx in each layer.

inversion is achieved iteratively using a forward solver,
and we call it a “physics-based” electromagnetic inversion
method. Then, we use three main machine learning techniques
(LRs, kNN, and random forest) and a simple NN to estimate
the permittivity profile solely from data for various scenarios.
We compare the accuracy and efficiency of the machine learn-
ing solutions and discuss how the given solutions might guide
us in designing measurement setups enabling more accurate
electromagnetic inversion. Then, we work on a slightly more
complicated problem, which can be considered as a 1-D pixel-
based electromagnetic inversion. Finally, we provide some
conclusions.

II. FORWARD PROBLEM

Assume a planarly layered medium with five layers where
all the interfaces are parallel to the xy-plane, as shown
in Fig. 1(a). All the layers are homogeneous, isotropic, non-
magnetic, and lossless. The top and bottom layers are infinitely
long along the z-axis. The top layer is air, so its relative elec-
trical permittivity is equal to one, �0 = 1. The first interface,
the interface between the top and underlying layer, is at z1 = 0.
The thicknesses of the inner layers are all equal to λ/4, where
λ is the wavelength of the electromagnetic waves created by
the transmitter antenna (Tx). These waves propagate along
with the planarly layered medium, and we measure the electric
field intensity at the receiver antennas (Rxs). Both transmitter
and receiver antennas are dipole antennas located on the
xz-plane (i.e., y = 0), pointing along the either x-, y-, or
z-axis.

For a multilayered media with all the layers’ thicknesses
and permittivity values known, layered medium Green’s func-
tions (LMGFs) give us the η-component of the electric field
recorded at a receiver located at r due to a ζ -directed electrical
dipole located at r� in a tensor form [18], [19], where η and
ζ are either x , y, or z, that is

G(r, r�, ε, z, λ) =
⎡
⎣ Gxx Gxy Gxz

G yx G yy G yz

Gzx Gzy Gzz

⎤
⎦ (1)

where ε = {�0, �1, �2, �3, �4} and z = {z1, z2, z3, z4} =
{0,−λ/4,−λ/2,−3λ/4}, as shown in Fig. 1.

One can calculate these dyadic Green’s functions by trans-
forming the problem from the spatial domain to the spectral

domain in which each layer is treated as a transmission line.
The layer thicknesses become the lengths of these transmission
lines whose impedances are calculated with those layers’ elec-
trical permittivity and magnetic permeability values. The volt-
age and current carried over these transmission lines in series
can be calculated by solving the transmission-line equations
recursively, corresponding to the electric and magnetic parts
of electromagnetic waves propagating in that multilayered
structure, respectively. Later, the electric and magnetic field
intensities can be computed by transforming the problem back
from the spectral domain to spatial domain by numerically
evaluating the Sommerfeld integrals [18], [19].

III. PHYSICS-BASED ELECTROMAGNETIC INVERSION

In an inversion problem, we are given some antenna
measurements and asked to determine electric permittivity,
conductivity, and/or magnetic permeability distributions over
a domain of interest. In some inversion applications, pixels
and cells are used to discretize the domain of interest in 2-D
and 3-D implementations, respectively. There, the main goal
is determining the physical parameters of each pixel or cell.
Here, we first study a simpler problem: determining the
electric permittivity of four layers with fixed thicknesses.
This can be accomplished numerically by using an LMGF
calculator as a forward solver. We first choose some random
permittivity values (ε p) and calculate LMGFs. The Euclidean
distance between given (measured) and calculated field intensi-
ties normalized with the magnitude of the largest measurement
value can be defined as a cost function, that is

f (ε p) =
����Ggiven − G(r, r�, ε p, z, λ)

����
2/max{Ggiven}. (2)

Then, we minimize this cost iteratively with an optimiza-
tion algorithm without any additional regularization. When
the error becomes smaller than the desired threshold value,
the permittivity prediction is completed.

For the implementation, we choose the Nelder–Mead
simplex algorithm [20] for the cost minimization and set
our threshold to 10−2. Each iteration is allowed to have
1000 subiterations to achieve a reduction in the cost. In other
words, 1000 different sets of LMGFs are calculated for each
iteration. Fig. 2 shows how the cost decays as a function
of iteration number for a sample case where the permittivity
values are randomly selected, assuming a transmitter antenna
at (x � = 0, z� = λ/2) and 20 receiver antennas equally
spaced between x = λ and x = 2λ at z = λ/2. The
“measurement” data are created by changing the direction
of transmitter and receiver antennas to {x, z, y, x, z} and
{x, x, y, z, z}, respectively. The reason behind using this set
of polarizations is given as follows: since all the layers are
isotropic and homogeneous, we know that Gxz = G yz and
Gzx = Gzy ; and since all the antennas are assumed to be
on the xz-plane, Gxy = G yx = 0. This means that, in our
configuration, there are only five distinct components: Gxx ,
Gxz , G yy, Gzx , and Gzz . From these five LMGF components
(electric field intensity measurements), we determine the rela-
tive electrical permittivity of the four layers in nine iterations.
The true permittivity values and the ones predicted by this
physics-based iterative solver are listed in Table I.
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Fig. 2. Cost versus number of iterations for the physics-based inversion
algorithm.

TABLE I

PERMITTIVITY VALUES PREDICTED BY THE PHYSICS-BASED

SOLVER VERSUS TRUE PERMITTIVITY VALUES

Fig. 3. Neural network implemented in this work has four layers all
implemented with 256 neurons and ReLu activation functions. N = n4

s during
training, and N = 1000 during testing. M = 10 × nr × nt , where nr and
nt are the number of receiver and transmitter antennas.

In addition to this test, all the scenarios discussed below
in Section V are also solved with this numerical solver. In all
cases, absolute errors are observed to be less than 1%, meaning
that the physics-based solvers can achieve inversion with very
high accuracy for these kinds of simplified semi-inversion
problems. Next, we use different machine learning techniques
aiming to achieve inversion solely from data.

IV. ELECTROMAGNETIC INVERSION

WITH MACHINE LEARNING

We first implement a simple NN on Google Colaboratory
using Keras’ [22] functional application program interface
(API) running on top of TensorFlow [23]. Fig. 3 shows the
NN used in this work, where the first three layers transform
the input data with the ReLu activation function [24] to achieve
the learning. The last layer, again implemented with the ReLu
activation function, accepts the output of the third layer merged
with the original input. Adam is used as the optimizer [25] to
minimize the mean squared error.

To answer the first question asked in the “Introduction”
(is deep learning better than other machine learning methods?),
we use three of the most frequently used machine learning
algorithms: LR, kNN, and random forest due to their simple
implementation and intuitive outcomes. The details of these
algorithms are beyond the scope of this article, so the readers
can kindly refer to [21]. We implement these methods with

a Python module named “sklearn” along with “numpy, pandas,
and matplotlib.”

To create a training data set, we assume N different sets
of ε, where ε = {1, �1, �2, �3, �4} and 1 ≤ �i ≤ 10 for
i = 1, 2, 3, 4. We calculate five LMGF components (Gxx , Gxz ,
G yy, Gzx , and Gzz) representing different transmitter–receiver
antenna polarization combinations for each geometry. Since
LMGFs are complex numbers, their real and imaginary parts
are stored separately. In the end, we obtain 10 × nr × nt

distinct numbers for each ε, where nr and nt are the number of
receiver and transmitter antennas, respectively. For validation
and testing, we create two other data sets of LMGFs for
randomly selected 1000 arrays of permittivities.

Since the layers closest to the antennas are likely to have
a more direct impact on the received electromagnetic waves
compared to the further layers, the prediction accuracy is
expected to be a function of layer index. To verify this
expectation, we carry out the following sensitivity analysis.
We first choose four numbers randomly between 1 and 10
to be used as the permittivity values for layers 1 to 4,
and we calculate the LMGFs assuming that the transmitter
antenna is at (x � = 0, z� = 0.5λ) and 20 receiver antennas
uniformly placed between x = 0.5λ and x = 1.5λ at
z = 0.5λ. Then, we replace the permittivity of the first layer
with another randomly selected number between 1 and 10;
then, we calculate the LMGFs again. For the generation of
random numbers, we use MATLAB’s default random number
generator algorithm. In the end, we record the difference
between permittivity values of the first layer and the Euclidean
distance between the LMGF sets normalized by the number of
receiver antennas. We repeat this procedure 1000 times. The
exact algorithm that we use is given as follows.

[�A, �B , �C , �D, �E ] = 1+ 9 ∗ rand(1000, 5)
for m = 1 : 1000 do

ε = [1, �A(m), �C(m), �D(m), �E (m)]
G1A ← Calculate LMGFs
ε = [1, �B(m), �C(m), �D(m), �E (m)]
G1B ← Calculate LMGFs
��1(m) = |�A(m)− �B(m)|
||G1||ave

2 (m) = ||G1A − G1B ||2/nr

end for
Then, we follow the same recipe for the other three layers.

In Fig. 4, we plot how LMGFs change by changing the
electrical permittivity of one layer while keeping the other
three the same. The y-axes shrinking from (a) to (d) clearly
indicate that the first layer has the highest impact on LMGFs,
and the impact of other layers decreases with increasing
layer number, confirming LMGFs’ sensitivity to the layer
index. This is why we calculate the normalized root mean
square error (�i ) for each layer separately using the following
formula:

�i =
���	 1

N

N

j=1

�
�̂i, j − �i, j

�i, j

�2

(3)

to compare machine learning algorithms’ prediction accuracy
for each layer, where �i, j and �̂i, j are the true and predicted
permittivity values for layer-i in the j th test. The overall
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Fig. 4. Sensitivity analysis: how much LMGFs change with changing
(a) �1, (b) �2, (c) �3, and (d) �4.

error (�o) can be measured with the square root of the average
of squared errors, that is

�o = 1

2

���	 4

i=1

�2
i . (4)

In the NN implementations, the number of epochs is set
to 1000 for all the examples presented in this work. For the
training, we first take ns values linearly sampled between
1 and 10 and then assign these values as permittivity of each
layer in an ordered arrangement fashion yielding N = n4

s
different permutations (with repetitions). Fig. 5(a) plots how
validation (during training) and test losses decay with the
number of epochs for the scenario discussed in Section III
where all the antennas are in the top layer and N = n4

s =
184 = 104 976. These smoothly decaying and converging
losses confirm that our network, indeed, learns from data.
Fig. 5(b)–(e) shows predicted versus actual values for the
1000 cases used in the testing. If the accuracy was 100%,
then we would have all the points on the x = y line for
1 ≤ x, y ≤ 10. However, what we observe is that the number
of points not on the x = y line and their distances to the
x = y line both increase from (b) to (e), which means
that the prediction accuracy decreases with increasing layer
index when all the antennas are in the top layer. This result
also means that the prediction accuracy, indeed, is a function
of layer sensitivity. When we compare the results depicted
in Figs. 4 and 5, we can clearly see that the permittivity
changes of the layers closer (further) to the antennas cause a
larger (smaller) change in the LMGFs that lead to more (less)
efficient learning, which is discussed in detail in Section V.

V. NUMERICAL RESULTS AND DISCUSSION

A. Machine Learning Versus Deep Learning

For the scenario described in § III, we use the three machine
learning methods and the NN described in § IV to answer
our first question: can machine learning techniques other
than deep learning achieve similar or higher accuracy in an
electromagnetic inversion? Fig. 6 shows the normalized root
mean square error for each layer separately for the estimates
obtained with four machine learning implementations trained

Fig. 5. (a) Validation (blue curve) and test (red dashed curve) losses versus
epoch number for the NN trained with ns = 18 data set. (b)–(e) True
permittivity versus predicted permittivity values for the 1000 cases used in
the testing.

Fig. 6. (a)–(d) Normalized root mean square error (�i for i = 1, 2, 3, and 4,
respectively) versus sampling density (ns ) for NN, LR, kNN, and random
forest implementations for the scenario shown in Fig. 1(a).

with the data sets with changing size as a function of ns . Note
that, when ns is increased from 8 to 18, the number of samples
in our training data set increases from 4096 to 104 976.
In Fig. 6(a), the red curve marked with diamonds shows that,
for smaller training data sets, LR is the most accurate method
to predict the permittivity of the first layer. In fact, the accuracy
of the LR-based solver is almost independent of sampling
density, ns , for the first layer, and it is only beaten by the
NN-based solver when ns ≥ 16. However, LR performs poorly
for the lower layers. The performances of kNN and random
forest are close to each other, but they are not as accurate as
of the NN implementation, which we can infer from the blue
curve marked with circles in Fig. 6. For the lower three layers,
the NN is the most accurate one by far.

When we look at the overall accuracy (�o), NNs, indeed,
outperform the traditional machine learning techniques in
achieving electromagnetic inversion solely from data. As pre-
viously reported in [26]–[28], the use of nonlinear activation
functions is the main reason behind neural networks’ success
in solving nonlinear problems. However, this higher accuracy
usually comes with a price: longer computation time and
higher memory usage. To have a comparative understanding,
we plot the time spent and memory used for the training
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Fig. 7. (a) GPU time and (b) memory versus sampling density (ns ) for NN,
LR, kNN, and random forest implementations.

or data fitting in the machine learning implementations as
a function of sampling density in Fig. 7(a) and (b), respec-
tively. With their relatively simple mathematical formulations,
the LR and kNN require two orders of magnitude or even
less time than random forest and NN implementations.
Of course, we can speed up the neural network and random
forest by reducing the number of epochs and estimators,
respectively, or by using multiprocessors and parallelization.
However, the important messages that we infer here are:
1) random forests and NNs can require substantially longer
times than the LR and kNN models during the training/data
fitting and 2) there is not a major time difference between
NNs’ training and random forests’ data fitting, especially for
large training data sets when we use a single GPU. In terms of
memory usage, NNs have a significantly different trend than
the others, i.e., they use much larger memory even for smaller
training data sets because of the high number of neurons
implemented in the NN. Even then, random forest’s memory
usage surpasses the NN’s memory for ns ≥ 18.

At the end of this brief study, we can claim that, despite
their computational cost, the use of NNs is indeed a promising
approach due to their high accuracy for solving electromag-
netic inversion problems solely from data. Next, we investi-
gate how the inversion accuracy depends on the interantenna
spacing.

B. Antenna Spacing Versus Inversion Accuracy

As previously mentioned, in many studies, the interantenna
spacing is set close to λ/2 [8]–[11], [13], [14]. According
to the Nyquist sampling theorem, this distance should be
sufficient for a successful inversion, but it would be useful to
understand how the interantenna spacing affects the inversion
accuracy. In this direction, we consider two different configu-
rations as follows.

In the first scenario, all the receiver and transmitter antennas
are located in the top layer, as shown in Fig. 1(a). We place
33 receiver antennas uniformly along 0.5λ ≤ x ≤2λ, z = 0.5λ.
The transmitter antenna is located at (x � = 0, z� = 0.5λ).
The training set has 20 736 examples, corresponding to
ns = 12. We first use the entire training data set and obtain an
overall inversion error of 0.216 with our NN implementation,
as listed in the last row of Table II. Then, we use the field

TABLE II

ERROR VERSUS INTERANTENNA SPACING: USING DIFFERENT NUMBERS
OF ANTENNAS LOCATED UNIFORMLY BETWEEN x = 0.5λ AND x =2λ

TABLE III

ERROR VERSUS INTERANTENNA SPACING: 20 ANTENNAS WITH

A DIFFERENT INTERANTENNA SPACING WHERE THE

FIRST RECEIVER ANTENNA IS λ AWAY FROM
THE TRANSMITTER ANTENNA

intensities recorded at the odd-numbered antennas for the
training. By doing so, we double the interantenna spacing.
In this case, the overall inversion error increases to 0.236.
We continue decreasing the number of receiver antennas by
eliminating the even-numbered ones of the previous set till
the interantenna spacing becomes λ/2, where we only have
four receiver antennas. As listed in Table II, the overall error
increases as we increase the distance between neighboring
antennas.

One might claim that changing the antenna spacing
while keeping coverage the same actually means reducing
the amount of information used for training, and hence,
the increasing error is inevitable, which makes the investiga-
tion unfair. This is why, as a next step, we consider a slightly
different configuration: now, there are 20 receiver antennas
located at (x = λ + [m − 1] × d, z = λ/2), where m is an
integer representing the antenna number from 1 to 20 and
d is the interantenna spacing. The transmitter antenna’s loca-
tion is the same as before (x = 0, z = λ/2). The training data
set has 20 736 samples. As listed in Table III, the prediction
error of our NN implementation decreases as we decrease d
from 0.5λ to 0.1λ at the steps of 0.1λ.

When we further increase the number of antennas in the
first configuration or decrease the interantenna spacing in
the second configuration, we observe almost no improvement
in the overall accuracy. In the light of these observations,
we might claim that: 1) increasing the number of antennas
helps with reducing the error but this reduction is not linear
and 2) similar to suggested mesh sampling density in CEM,
use of 20–30 antennas per wavelength might be the ideal case
for the highest accuracy, but further increase in the number of
receiver antennas is not helpful.

Notice that, even though we have the same interantenna
spacing (d = 0.5λ) in the first rows of Tables II and III,
the former has a smaller error. There are mainly two reasons
behind this difference (location of the antennas and distance
between transmitter and receiver antennas), which we discuss
in Section V-C.
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Fig. 8. For the configuration shown in Fig. 1(a), blue and red curves show
how the overall error (�o) changes as a function of the location of the receiver
antennas along the z- and x-axes, respectively.

C. Location of the Antennas Versus Inversion Accuracy

First, let us examine how the overall error changes when
we change the location of these 20 receiver antennas verti-
cally or horizontally in the top layer. The configuration is
shown in Fig. 1(a). The transmitter antenna is located at
(x � = 0, z� = λ/2). Training and testing data sets have
20 736 and 1000 samples, respectively. When all the
20 receiver antennas, which are placed uniformly between
x = λ and x = 2λ, and are moved away from the top interface
in the ẑ-direction from z = 0.1λ to z = 4λ, the overall
error increases from 0.224 to 0.411, as shown with the blue
curve in Fig. 8. Similarly, when we shift the receiver antennas
along the x̂-direction from xmin = 0.1λ to xmin = 4λ, while
z = 0.5λ, the overall error increases from 0.198 to 0.599,
where xmin is the x coordinate of the receiver antenna closest
to the transmitter antenna. These results mean that the accuracy
increases when the transmitter and receiver antennas get closer
to each other and to the domain of interest.

Thus, all the cases that we have discussed have receiver and
transmitter antennas placed in the top layer, and the minimum
error is achieved for the prediction of the first layer’s relative
electrical permittivity. Next, we place antennas in different
layers and try to understand how the location of antennas
affects the inversion accuracy. Training and testing data sets
have 4096 and 1000 samples, respectively.

Case-A: This is the reference case, whose results are already
provided in Fig. 6: The transmitter antenna is located at
(x = 0, z = λ/2); 20 receiver antennas are in the top layer
(λ ≤ x ≤2λ, z = λ/2). Table IV lists all the individual errors
and the overall error both for this and the following cases.

Case-B: 20 receiver antennas are placed in the bottom layer
(λ ≤ x ≤2λ, z = −λ), as shown in Fig. 1(b). The transmitter
antenna location is the same as Case-A. Not surprisingly,
in Case-B, the smallest error is obtained for the prediction
of the bottom layer’s permittivity. However, here, the errors
in predicting the inner layers’ permittivities are lower than
the Case-A. This can be explained as follows: in Case-A,
the primary field term (the direct interaction between Rx

and Tx [19]) is dominant, and as the waves propagate toward
lower layers, they get weaker (much smaller than the primary

TABLE IV

ERROR VERSUS LOCATION OF THE ANTENNAS. ns = 8

field term), but, in case B, there is no primary field term, and
the electromagnetic waves have to propagate through all the
layers and interfaces to reach the receiver antennas placed in
the bottom layer. The recorded field intensities form a more
balanced data set in terms of magnitudes, and this leads to
more efficient learning.

Case-C: As shown in Fig. 1(c), now, there are 20 receivers
uniformly distributed along the vertical line (x = λ,−λ ≤
z ≤ λ/4). Since, here, we have antennas in the domain
of our interest, this is not a valid electromagnetic inversion
configuration, but it still might be helpful. As listed in the
fourth row of Table IV, when we have multiple receiver
antennas in each layer, all the errors decrease dramatically.
Recognizing that it is obtained solely from data without any
physics, this result can still be considered as a success of deep
learning.

Case-D: This is a slightly modified version of the configura-
tion discussed in Case-C. To investigate how the error changes
with increasing distance between receiver and transmitter
antennas, we move all the receiver antennas used in Case-
C horizontally from x = λ to x =10λ. We observe that all the
errors increase three times or more compared to Case-C. This
result confirms that, when the distance between receiver and
transmitter antennas increases, the accuracy drops. Consider-
ing LMGFs’ oscillatory behavior in the far-field [19], this is
not a surprising result.

Case-E: As shown in Fig. 1(d), this time, we have one
receiver (x = 0) and one transmitter antenna (x = λ) in
each layer. The z-coordinates of these antennas are z =
{−λ,−5λ/8,−3λ/8,−λ/8, λ/4}. Here, we do not have mul-
tiple receiver antennas in each layer, but, by having Rx-Tx

pairs in each layer, we provide a direct interaction between
Rx and Tx in each layer. The error values are very close to
the Case-C results but not better in terms of magnitude.

Based on the results of the last three cases, we can suggest
that, when we have antennas, which can receive waves imme-
diately reflected from or transmitted through the objects within
the domain of interest, neural networks have the potential
to identify those objects with higher accuracy compared to
the cases where antennas receive waves after propagating
through more complicated paths (transmission through one
interface first, then reflection from the bottom interface, and
then another reflection from the upper interface, and so on).

D. What Else Can Be Done to Increase the Accuracy?

In real-life applications, we might not always have antennas
that can receive waves immediately reflected from or transmit-
ted through the objects within the domain of interest. So what
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else can we do to increase the accuracy? Let us revisit the
configuration shown in Fig. 1(a) in which normalized root
mean square errors are 0.039, 0.09, 0.175, and 0.118 with
ns = 18 training data set.

First, we can design more complex NNs by increasing
the number of hidden layers [8]–[11], [13], [14], which can
especially help with problems dealing with several objects, but
it is not the case here. Second, we can build NNs with complex
activation functions to improve the accuracy [29], but, since
they are computationally expensive, they might slow down
the training process significantly, especially, if the network
is implemented with a programming language, which is not
specifically designed for scientific computing, such as Python.
Third, simple postprocessing methods, such as taking the
average of the predicted values in the last few epochs [4], and
advanced methods, such as the NN-based image processing
algorithm implemented in [14], can increase the accuracy by
balancing over and underestimates and increasing the contrast
among multiple objects, respectively. Another method for
slightly higher accuracy is using a nonuniform grid for the
training. Similar to their success in hyperparameter optimiza-
tion [30], training sets created on nonuniform grids can lead to
better learning by providing both smaller and larger contrasts
compared to a training data set created on a uniform grid.
In Fig. 9, we show how much improvement that we can
get by using a training set created on a nonuniform grid,
which has n4

s randomly sampled permittivity values between
1 and 10 for each layer using MATLAB’s default random
number generator, i.e., ε p(n4

s , 1 : 4) = 1 + 9 ∗ rand(n4
s , 4).

We observe that the training data set created on a nonuni-
form grid yields a more accurate inversion than the uniform
grid data set. The final normalized root mean square errors
are 0.029, 0.05, 0.081, and 0.072 for the ns = 18 case,
which are almost half of the errors obtained with uniform
grid. These are more promising numbers than the originals
but still not as impressive as the ones obtained in Case-C
(i.e., multiple receiver antennas passing through all layers).
There is another possibility that we can investigate: a multi-
frequency (broadband) excitation that is our next test.

E. Spectral Versus Spatial Distribution

Considering the important role of color in image recog-
nition applications of deep learning, the use of broadband
excitations should increase the accuracy of electromagnetic
inversion applications of deep learning too. Very recent studies
indeed confirm that training and testing a learning system
with broadband excitations (either continuous or discrete) out-
perform the learning systems deploying single-frequency data
sets [6], [16]. Here, we would like to investigate a slightly
different research question. Which one is better: nr receiver
antennas operating at a single frequency ( f0) or one receiver
antenna operating at nr different frequencies ( fm) consecu-
tively, where fm ≤ f0 for m = 1, 2, · · · , nr ? The criterion
described for the frequency sampling is crucial because the
use of higher frequencies, in other words, the use of shorter
wavelengths, would provide an unfair advantage to the multi-
frequency system by increasing the resolution.

Fig. 9. (a)–(d) �i versus ns for neural-networks trained by a dataset generated
on uniform grids (blue curves with circle markers) and on non-uniform grids
(red curves with diamond markers), for i = 1, 2, 3, and 4, respectively.

TABLE V

ERROR VERSUS LOCATION OF THE ANTENNAS: MULTIFREQUENCY

EXCITATION. TRAINING SET ns = 8

To test this idea while having a fair comparison, we create
another group of training and testing data sets using only one
transmitter and one receiver antenna operating at 20 distinct
frequencies uniformly sampled from c0/2λ to c0/λ, where
c0 is the speed of electromagnetic waves in vacuum. Trans-
mitter antenna is located at (x � = 0, z� = λ/2). We first place
the receiver antenna in the top layer at (x = λ, z = λ/2);
then, we place the receiver antenna in the bottom layer at
(x = λ, z = −λ). The training set has 4096 samples. These
two cases are labeled as Case-F and Case-G, respectively, and
individual and overall errors are listed in Table V. Compared
to Case-A and Case-B, where we have 20 antennas spatially
distributed from x = λ to x = 2λ in the top and bottom layers,
respectively, here, we have much smaller errors. Especially,
for the cases with all the antennas in the top layer, there is
more than an order of magnitude reduction in overall error
(from 0.442 to 0.037). This result tells us that the minimum
number of antennas required for accurate electromagnetic
inversion can be lower than the one calculated with the Nyquist
sampling theorem when multifrequency excitation is used for
training and testing. By having fever antennas, transmission
lines, and other required circuitry, this approach can reduce the
volume and cost of the real electromagnetic inversion devices
significantly.

F. Slightly More Complicated Problem: 1-D Pixel-Based
Electromagnetic Inversion

As for the last exercise, we slightly change the problem as
follows. We divide the region between z = 0 and z = −λ
into 240 thin layers, and we place three objects with random
thicknesses changing between λ/240 and λ/2 and permittivity
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Fig. 10. Region between z = 0 and z = −λ is divided into 240 layers. Three objects with a random thickness and relative permittivity are formed in this
region. Left column: permittivity profiles of the first 30 examples of the 1000 cases studied. Middle and right columns: permittivity profiles predicted by the
NN system with multiantennas/single frequency and singel antenna/multifrequency, respectively.

values randomly selected between 1 and 4. The left column
of Fig. 10 shows 30 sample permittivity profiles.

The source is located at (x � = 0, z� = 0.1λ). For
the multiantenna case, we assume 20 receiver antennas
uniformly placed along 0.5λ ≤ x ≤ 1.5λ, z = 0.1λ.
For the multifrequency case, the receiver antenna is at
(x = 0.5λ, z = 0.1λ), and we calculate LMGF sets at
20 frequency values from c0/2λ to c0/λ. Training and testing

data sets have 100 000 and 1000 samples, respectively, in each
case. A visual comparison of the middle and right columns
of Fig. 10 with the permittivity profiles shown in the left
column indicates that both approaches provide a successful
inversion such that both thin and thick objects with small
and large contrasts are detected. The overall accuracy of the
NN implementation for the multiantenna case turns out to
be 92.6%, while the multifrequency implementation’s accuracy
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is 95.35%. When we shift all the antennas 0.4λ along the
z−axis, these numbers reduce to 88.1% and 93.9%, respec-
tively. The outcomes of this brief study align with the observa-
tions shared previously: 1) multifrequency systems outperform
the single-frequency systems and 2) bringing antennas closer
to the domain of interest increases the inversion accuracy.

VI. CONCLUSION

LR, kNN, random forest, and NN-based learning systems
are trained to solve a simplified 1-D electromagnetic inversion
problem. In terms of accuracy, NN-based learning systems
outperform the other machine learning methods implemented
in this work. Numerical results show that using more antennas
that are placed around the domain of interest as close as possi-
ble and training data sets created with random grids rather than
uniform grids can increase the inversion accuracy, especially
for the single-frequency applications. Multifrequency systems
can provide more efficient learning while requiring a lower
number of antennas than single-frequency systems.
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