
4. EXPERIMENTAL RESULTS AND DISCUSSION

A conventional STDA antenna [9] and a proposed compact STDA

antenna with top loading, as shown in Figure 1(b), are fabricated on

an FR4 substrate, and their performance characteristics are com-

pared. Figure 5 shows the photographs of the fabricated antennas.

Figure 6 presents the simulated and measured input VSWR

and realized gain characteristics of the fabricated STDA and

proposed antennas. The bandwidths of the STDA and proposed

antennas for a VSWR< 2 are about 47.3% (1.68–2.72 GHz) and

48.0% (1.68–2.74 GHz), respectively, for the simulation, and

about 47.8% (1.72–2.80 GHz) and 48.7% (1.68–2.76 GHz),

respectively, for the measurement. In the band from 1.7 to 2.6

GHz, the measured gains of the STDA and proposed antennas

are 5.5–6.2 and 5.6–6.0 dBi, respectively. The realized gain of

the proposed antenna is improved at a low operating frequency

band, but is slightly decreased or stays almost the same in the

remaining frequencies. From these comparison results, we can

conclude that the proposed antenna with a lateral size reduction

of 14.3% shows similar performance with minimal degradation

compared to the conventional STDA antenna.

The radiation patterns of the fabricated STDA and proposed

antennas in the E-plane(x-y plane) and H-plane(y-z plane) at 1.8,

2.35, and 2.6 GHz are plotted in Figure 7.

Table 2 summarizes the measured half-power beamwidth in the

E- and H-planes and the FBR at 1.8, 2.35, and 2.6 GHz. We see

from Table 2 that the FBR of the proposed antenna is 13.2–17.7

dB, which is 0.7 to 4.8 dB better than those of the STDA antenna.

5. CONCLUSION

We have presented the design of a compact broadband STDA

antenna with top loading for size reduction. To reduce the lat-

eral size of a conventional STDA antenna, rectangular patch-

shaped top loading is used for the two dipole elements, and a

grooved ground plane is used by adding a patch at both ends of

the ground plane. The effects of varying the length and width of

the rectangular patch-shaped top loading on the antenna per-

formances are investigated. A proposed STDA antenna covering

a frequency band ranging from 1.7 to 2.7 GHz with a gain> 5

dBi is designed with the total antenna width reduced by approx-

imately 14.3% compared to the STDA, but a little degradation

in the antenna performances.

To validate the proposed design method, an STDA antenna and

a proposed compact STDA antenna with top loading are fabricated

on an FR4 substrate. Experimental results show that the proposed

compact antenna presents a 48.7% bandwidth in the range of

1.68–2.76 GHz and a stable gain of 5.6–6.0 dBi with minimal deg-

radation. Moreover, the FBR is improved by about 0.7 to 4.8 dB.

The proposed broadband STDA antenna can be used as

antennas for low-power (indoor) repeaters integrating various

mobile communication systems (PCS, IMT-2000, LTE) and

wireless services (WiBro, WLAN, Bluetooth, WiMAX), or as

an element antenna of a wideband high-gain base-station

antenna for mobile communications.
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ABSTRACT: Graphene can be defined either as an infinitely thin

material with an optical conductivity or as a thin layer with a finite
thickness and an effective complex electrical permittivity. Layered

medium Green’s functions are calculated according to these two defini-
tions for multilayered structures including a graphene layer. It is found
that numerical methods show a good agreement especially in the far

field. Moreover, finite thickness method requires significantly less com-
putation time than the effective complex permittivity method. Thus, con-

sidering the computation time and accuracy, the finite thickness
approach is a better alternative to analyze the electromagnetic wave
propagation and scattering in multilayered media with a graphene

layer. VC 2013 Wiley Periodicals, Inc. Microwave Opt Technol

Lett 55:2293–2296, 2013; View this article online at

wileyonlinelibrary.com. DOI 10.1002/mop.27838
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TABLE 2 Comparison of Measured Half-Power Beamwidth in E- and H-Planes and Front-to-Back Ratios at 1.8, 2.35, and 2.6 GHz

Freq. (GHz)

E-plane H-plane

HPBW (�) FBR (dB) HPBW (�) FBR (dB)

STDA Proposed STDA Proposed STDA Proposed STDA Proposed

1.8 71 57 13.0 14.4 116 111 12.9 17.7

2.35 67 76 13.1 16.6 111 115 14.7 16.9

2.6 68 78 12.5 13.2 106 105 13.3 14.2
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1. INTRODUCTION

Graphene has gathered a strong interest both from the research

community and industry in the last few years because of its

unique electrical and mechanical properties [1–10]. It has

already found different roles in a wide range of applications

including optical modulators [3], transistors [4], p-n junctions

[5], sensors [6], waveguides [7], transformation optics [8],

LEDs, photodetectors, absorbers, frequency converters, and

many other subjects [9].

Although the interest on graphene is enormous, there are

only a limited number of efforts from the computational electro-

magnetic (CEM) community. One of the main reasons behind

this lack of response is the use of two-dimensional (2D) optical

conductivity to represent this one atom thick material. Such

material modeling requires a special boundary condition wher-

ever the graphene layer is present. Alternatively, 2D optical con-

ductivity can be converted to an effective complex electrical

permittivity (�eff ) and graphene can be treated as a 3D material

with �eff and a finite thickness, as it is done in [7]. These two

approaches are labeled as 2D and 3D, respectively, in the rest of

the article.

When we examine the graphene based devices under devel-

opment [1–9], we realize that most of these structures are minia-

turized versions of typical mutlilayered medium applications

that have been designed and analyzed by several CEM research

groups for decades. Extensive research has been done to analyze

electromagnetic wave propagation through and scattering from

objects embedded in a multilayered medium [11–14]. One of

the most commonly implemented methods is formulating the

problem using layered medium Green’s functions (LMGFs), so

that the inhomogeneous background is not included in the solu-

tion domain (mesh) [11–14]. The particular interest of this work

is the evaluation of LMGFs for a multilayered background

including a graphene layer.

Two of the few studies on Green’s functions and graphene

are done by Nikitin et al. [15] and Hanson [16]. The former

presents an analytical expression for the electromagnetic dyadic

Greens function for 2D sheets including graphene [15], where

the background is a homogeneous dielectric. The latter finds an

exact solution for the electromagnetic field due to an electric

current in the presence of a surface conductivity model of gra-

phene [16]. However, the main focus of [16] is the surface

wave propagation along graphene rather than the evaluation of

LMGFs.

This work first briefly explains a mathematical model to cal-

culate the optical conductivity of graphene as a function of

angular frequency (x), temperature (T), chemical potential (lc),

and hopping parameter (t). Next, the modified sets of Fresnel

reflection coefficients are provided to calculate LMGFs for a

multilayered medium including a graphene layer, which is

defined with its optical conductivity without a physical thick-

ness. In the “Numerical Results” section, LMGFs are calculated

with modified and regular Fresnel coefficients, where the effec-

tive complex permittivity approach is used for the latter. Numer-

ical results obtained with these two different formulations are in

very good agreement, especially in the far field. The effective

complex permittivity approach is disadvantageous because it

requires more computation time due to additional oscillations

existing in the Sommerfeld integrals.

2. FORMULATION

The optical conductivity of graphene can be written as

rc5rr1jri, where the real and imaginary parts can be calcu-

lated by using procedure found in [10]

rr5r0

182 �hx=tð Þ2

p12
ffiffiffiffiffiffiffi
3ð Þ

p
" #

wrj; (1)

where

wr5tanh
�hx12lc

4kBT

� �
1tanh

�hx22lc

4kBT

� �
; (2)
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� �2
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2
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122

lc

3t

� �2
� �( )

; (6)

where

!5log
j�hx12lcj
j�hx22lcj

; (7)

and r05pe2=2h, h and �h are regular and reduced Planck con-

stants, respectively, and kB is Boltzmann constant. Note that the

above formulation assumes a positive chemical potential. For a

negative chemical potential, one can use r lcð Þ5r 2lcð Þ.
Now consider a general multilayer medium consisting of N

layers separated by N21 planar interfaces parallel to the xy
plane, as shown in Figure 1. Layer i exists between zi and zi21

and is characterized by relative electrical permittivity �i and rel-

ative magnetic permeability li. The top surface of the ith inter-

face is coated with graphene.

In a layered medium, electric and magnetic fields due to

arbitrary electric and magnetic currents can be expressed in a

dyadic form. For example, ~�G
EJ

r; r0ð Þ is the dyadic LMGF relat-

ing electric field intensity at r due to electric current at r0 [12]

Figure 1 An N-layer medium with a graphene layer on top of the ith

interface. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com]
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~�G
EJ

r; r0ð Þ5

GEJ
xx GEJ

xy GEJ
xz

GEJ
yx GEJ

yy GEJ
yz

GEJ
zx GEJ

zy GEJ
zz

2
6664

3
7775 (8)

where GEJ
gf gives ĝ component of the electric field at r due to a

f̂ directed unit electric dipole located at r0, where g and f are

either x, y, or z.

Once the dyadic LMGFs are calculated for a layered

medium, the electric and magnetic fields at any point can be

obtained with the superposition principle. For the details of the

derivation procedure of the multilayer media Green’s functions,

the reader may refer to [11–14]. Briefly, first the problem

domain is transformed from spatial to spectral, in which each

layer is represented by a uniform transmission line having the

same physical properties; hence the electric and magnetic fields

can be interpreted as voltage and current, respectively, on a

transmission line. Second, Green’s functions in the spectral

domain, called transmission line Green’s functions (TLGFs), are

derived by using this transmission line analogy [11,12]. Finally,

TLGFs are converted to spatial domain Green’s functions via

proper integrations, which are as Sommerfeld integrals.

The Fresnel reflection coefficients are the main components

for the evaluation of TLGFs. For a multilayered structure with-

out a graphene layer, the reflection coefficients for TM and TE

waves from the interface between the layer i and layer i 1 1 can

be calculated by using

RTM
i;i 115

�i11kz;i2�ikz;i 11

�i11kz;i 1�ikz;i 11

; (9)

RTE
i;i 115

li11kz;i 2likz;i 11

li11kz;i 1likz;i11

; (10)

respectively, where k2
z;i 5k2

i 2k2
q, ki is the wave-number of layer

i, kq is the radial wave-number (integration variable of the Som-

merfeld integrals). However, if this interface is coated with gra-

phene, then the Fresnel coefficients should be modified as

follows

RTM
i;i 115

�i11kz;i2�ikz;i 112jkz;i kz;i 11rc=x
�i11kz;i1�ikz;i 112jkz;i kz;i 11rc=x

; (11)

RTE
i;i 115

li11kz;i 2likz;i112jrcx
li11kz;i 1likz;i111jrcx

: (12)

These slightly modified Fresnel coefficients are sufficient

enough to add the capability of handling structures with gra-

phene in any layered medium solver. However, if it is not possi-

ble to change the numerical solver algorithm (i.e., for

commercial CEM solvers), then one might consider using the

effective electrical permittivity approach, in which the optical

conductivity of graphene is converted to a complex effective

electrical permittivity by using

�eff 512j
rc

x�0d
(13)

and treating graphene as a 3D material with a finite thickness d,

which is equal to 0.335 nm. Again, we label the evaluation of

LMGFs with modified and regular Fresnel coefficients as 2D

and 3D approaches, respectively, due to the treatment of gra-

phene. The 3D approach is an approximate solution of the 2D

approach. In the next section, the accuracy of the approximate

approach is examined.

3. NUMERICAL RESULTS

For the sake of simplicity, LMGF samples are calculated for an

oscillating electrical dipole placed on top of a graphene coated

glass slide with the relative permittivity of 2.25 and a thickness

of 2 mm. The top and bottom layers are air with the relative

permittivity of 1. rc is calculated for t52:7 eV, lc50:2 eV, and

T5300 K.

Figure 2 shows the x and z components of the electric field

intensity due to x and z directed electric dipoles oscillating at

f 57:531014 Hz. The source is located at (0, 0, 5) nm and test-

ing points are sampled along 2150nm < z < 150nm for x525

nm, y50. Eqs. (1–7) yield rc56132j0055lS and this value is

converted to �eff 5103952j43857 for the 3D approach using Eq.

(13). The results obtained with 2D and 3D approaches are in

good agreement, where the maximum absolute error is 4.6%.

Figure 2 The magnitude of Green functions (xx, zz, zx, and xz compo-

nents) for x 5 25 nm, y 5 0, 2150 nm < z < 150 nm , f 5 7:5 3 1014

Hz. The source is located at (0, 0, 5) nm. Red circles and solid lines

represent 2D and 3D approaches, respectively. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]

Figure 3 The magnitude of Green functions (xx, zz, zy, and yz compo-

nents) for x 5 0 nm, 1023 < k0y < 10, z 5 25 nm, f 5 4 3 1014 Hz. The

source is located at (0, 0, 5) nm. Red circles and solid lines represent

2D and 3D approaches, respectively. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com]
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For the second set of numerical results (Fig. 3), LMGFs are cal-

culated on a horizontal line of 1023 < yk0 < 10 for x 5 0 nm and

z5 2 5 nm at f 5 431014 Hz, where rc 5 61272j194 lS and

�eff 51262j82188. The results obtained with 2D and 3D approaches

are in good agreement, where the maximum absolute error is 4.2%.

Finally, we compare the number of integration segments

used in adaptive integration with 3D and 2D approaches as a

function of h (Fig. 4), the distance between source/test point and

the interface such that z052z5h. For a fixed accuracy level, we

observe that both approaches require more integration segment

and hence more CPU time as the source and field points get

closer to the interface. However, this increase is more signifi-

cant for the 3D case as expected because of additional oscilla-

tions in the Sommerfeld integrand created by the extremely thin

layer of graphene with respect to the wavelength.

4. CONCLUSION

LMGFs are calculated for multilayered structures including a

graphene layer with two different approaches. For the first

approach, the graphene is assumed to be infinitely thin and

defined with its optical conductivity. For the second approach,

an effective electrical permittivity is used to define graphene

which has a thickness of 0.335 nm. Results obtained with these

two approaches agree well with each other in the far field. For

the near field, the maximum error is less than 5%. However,

effective electrical permittivity approach might require as high

as 50 percent more computation time for near-field calculations

due to additional oscillations in the Sommerfeld integrands.
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ABSTRACT: A 3.1–10.6-GHz ultra-wideband low-noise amplifier
(UWB LNA) with excellent phase linearity property (group-delay varia-

tion is only 619.46 ps across the whole band) using standard 0.18-mm
CMOS technology is reported. Current reused, self-forward body bias
and forward combining techniques are used to achieve low power and

high-power gain (S21). Both high and flat S21 and low and flat noise fig-
ure (NF) frequency responses are achieved by tuning the pole frequen-

cies and pole quality factors of the second-order gain and NF frequency
responses to approximate the maximally flat condition simultaneously.
The LNA dissipates 6.93-mW power and achieves NF of 3.76 at 10 GHz.

In addition, the LNA achieves input return loss (S11) smaller than 210.6
dB, and high and flat S21 of 11.02 6 0.47 dB over the 3.1–10.6-GHz
band. The corresponding figure of merit (FOM) is 3.11 GHz/mW, one of

the lowest FOMs ever reported for a 3.1–10.6 GHz CMOS UWB LNA.
The measured input third-order intermodulation point (IIP3) is 23.6

dBm at 6 GHz. VC 2013 Wiley Periodicals, Inc. Microwave

Opt Technol Lett 55:2296–2302, 2013; View this article online at

wileyonlinelibrary.com. DOI 10.1002/mop.27834

Key words: CMOS; ultra-wideband; low-noise amplifier; current

reused; low power; high gain; self-forward body bias; forward combin-
ing technique

Figure 4 Number of integration segments used in adaptive integration

with 3D and 2D approaches for z052z5h
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