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A closed-form approximate expression for the optical conductivity of graphene is developed, which generates re-
sults with less than 0.8% maximum absolute error for λ > 250 nm. The expression takes wavelength, temperature,
chemical potential, and hopping parameter into account and provides a fast, easy, and reliable alternative to
well-knownmethods that include singular integrals. Numerical results confirm that the effective complex electrical
permittivity derived from the optical conductivity successfully represents this one atom thick material in three-
dimensional electromagnetic simulations and analyses. © 2013 Optical Society of America
OCIS codes: (260.2110) Electromagnetic optics; (160.4760) Optical properties; (240.0310) Thin films.
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Graphene, a one atom thick sheet of carbon atoms, has
been receiving a great deal of interest since its invention
[1] due to its exceptional electrical and optical proper-
ties. It has found different roles in a wide range of appli-
cations including optical modulators [2], transistors [3],
p–n junctions [4], sensors [5], transformation optics
[6], and many other subjects explained in [7].
One of the several properties of the graphene under

careful examination, both theoretically and experimen-
tally, is its two-dimensional (2D) complex optical
conductivity (σc � σr � iσi) in different parts of the
electromagnetic spectrum [8–17]. There are multiple
factors determining σc: wavelength λ, temperature T ,
hopping parameter t, and chemical potential μc, which
is a function of the carrier density and can be controlled
by gate voltage, electric field, magnetic field, and/or
chemical doping [13,15].
In the last decade, several methods have been devel-

oped to calculate the conductivity of graphene. In
[8,9,13], Gusynin et al. developed a frequency dependent
electrical conductivity tensor using the Kubo formu-
lation. Peres et al. [10] studied the electronic properties
of graphene in the presence of defects, and electron–
electron interaction as a function of temperature, exter-
nal frequency, gate voltage, and magnetic field. Wunsch
et al. [11] and Hwang and Das Sarma [12] developed sim-
ilar methods to calculate the conductivity of graphene
from the polarization based on the Dirac cone approxi-
mation for finite chemical potential and arbitrary radian
frequency, respectively. Stauber et al. also developed a
method based on the Kubo formulation to calculate
the optical conductivity of graphene by taking into ac-
count its full density of states and found that in the
optical regime the corrections to the Dirac cone approxi-
mation are quite small [14]. Li et al. calculated the con-
ductivity of a single graphene sheet for the infrared part
of the spectrum [15].
In three-dimensional (3D) electromagnetic analyses,

the graphene can be defined as an infinitely thin material
with an optical conductivity of σc. However, such defini-
tion requires a special boundary condition treatment,
which is not available in most of the commercial
full-wave electromagnetic solvers. One might try to

overcome this problem by treating the graphene as a
3D material with a finite thickness and refractive index
(or electrical permittivity). For example, Bruna and
Borini developed an extremely simple model to define
the refractive index of graphene [17] but their model only
depends on the frequency of the excitation. Therefore, it
cannot be used in any study where the chemical potential
or temperature changes.

This work is aimed to answer following two questions:
(i) whether we can obtain a closed-form, integral-free ex-
pression for the optical conductivity of graphene, so that
one could calculate it with a simple calculator not only in
visible but also in infrared region of the electromagnetic
spectrum, and (ii) whether we can safely convert the
(2D) optical conductivity into (3D) electrical permittivity
to represent graphene as a 3D material in 3D electromag-
netic simulations.

In this direction, we first develop an approximate func-
tion in order to replace the momentum integral existing
in the Kubo formulation and remove the singularity in the
expression developed by Stauber et al. [14] for the imagi-
nary component of the optical conductivity. Numerical
results show that the approximate closed form expres-
sion generates results with a maximum absolute error
of 0.8%. In the second part of this work, we convert
the 2D optical conductivity into 3D effective electrical
permittivity and evaluate the accuracy of the approach.
Numerical results confirm that the effective electrical
permittivity successfully represents this one atom thick
material in 3D electromagnetic simulations and analyses.

According to [14], the real and imaginary parts of the
conductivity can be calculated by using
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where

ϒ � log
jℏω� 2μcj
jℏω − 2μcj

(7)

and σ0 � e2∕4ℏ, t is the hopping parameter of graphene, ℏ
is the reduced Planck constant, and kB is the Boltzmann
constant. Note that the above formulation assumes a pos-
itive chemical potential. For a negative chemical poten-
tial, one can use σc�μc� � σc�−μc�.
In [14], Stauber et al. provide an approximate expres-

sion for the real part of the conductivity for the visible
range of the electromagnetic spectrum. If the frequency
is not in that range, then one needs to evaluate the sin-
gular integral given in Eq. (5). Moreover, the approximate
expression developed by Stauber et al. for the imaginary
part of the conductivity is singular at ℏω � 2μc. Apart
from a mathematical singularity, the logarithmic function
in Eq. (7) suggests a dramatic dip at ℏω � 2μc; however,
when we examine the experimental results provided in
[15], we do not observe such a huge drop in the imaginary
part of the conductivity near ℏω � 2μc.
In the light of these mathematical and physical obser-

vations, we propose to replace the κ andϒ functions with
the following ones:
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�
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The numbers in Eq. (8) are obtained with the help of a
MATLAB search algorithm yielding a minimum root
mean squared error. The new ψ i term in Eq. (9) removes
the singularity without damaging the general behavior of

σi near ℏω � 2μc, similar to the singularity treatment
implemented in [18]. Moreover, ψ i makes σi a
temperature-dependent variable [19].

In Figs. 1(a) and 1(b), we plot the real and imaginary
parts of the complex conductivity of graphene at T �
45 K as a function of frequency for three chemical poten-
tial values, assuming 2.7 eV of hopping parameter.
The results plotted with solid lines are obtained with
Eqs. (1)–(7) and admitted as “exact results,” while the
results shown by markers are generated with the
approximate expressions. These results indicate that
Eqs. (8)–(10) can successfully approximate σr and re-
moves the singularity in σi without changing its general
behavior. Figures 1(c) and 1(d) show real and imaginary
parts, respectively, in the visible region as a function of
chemical potential for 0 eV < μc < 4 eV. Compared to
exact solution, the maximum relative error is less than
0.8% except for the ℏω ≈ 2μc region due to logarithmic
singularity in Eq. (7).

In Fig. 2, we plot the imaginary part of the conductivity
only for ω � 3 eV and 1 < μc < 2 eV to show the effect of
smoothing factor ψ i. While Eq. (7) suggests an infinite
conductivity at ℏω � 2μc, the ψ i term removes the singu-
larity in Eq. (7) without changing the main character
of σi.

In order to verify the accuracy of the approximate for-
mulation, we reproduce two sets of numerical results
plotted in Figs. 2 and 6 of [14], which are not provided
here for the sake of brevity. In short, we first calculate
graphene’s conductivity at two different temperatures
(T � 10 K and T � 300 K) for two chemical potential
values (μc � 0 eV and μc � 0.2 eV), then we calculate
the transmittivity and reflectivity for normal incidence
for a two-layer medium which are separated by an infi-
nitely thin graphene layer. Both sets of approximate re-
sults are in a perfect agreement with the exact results
provided in [14].

All these numerical analyses confirm that the devel-
oped approximate formulation provides a very robust
and efficient method to calculate the optical conductivity

Fig. 1. (a) σr and (b) σi for μc � 0 eV (blue), μc � 0.2 eV
(green), and μc � 0.4 eV (red) as a function of wavelength at
T � 45 K. Solid lines are generated using Eqs. (1)–(7) and
approximate results shown by markers are obtained using
Eqs. (8)–(10). (c) and (d) show real and imaginary parts, respec-
tively, in the visible region as a function of chemical potential.
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of graphene at any temperature or chemical potential for
a wide range of wavelengths (λ > 250 nm).
In the second part of this work, we examine the accu-

racy of the effective electrical permittivity approach in
which graphene is modeled as a 3D material with a finite
thickness and a complex electrical permittivity. In this
direction, we first convert the optical conductivity of gra-
phene to a complex effective electrical permittivity by us-
ing ϵeff � 1� iσc∕ωϵ0d, where d is the thickness of the
graphene layer, which is equal to 0.335 nm. Then we cal-
culate the transmittivity with two different methods.
First, we follow the 2D approach where graphene is rep-
resented with a 2D conductivity only (without any thick-
ness) for T � 300 K, μc � 0.2 eV, ϵ1 � 1, ϵ2 � 1 1 or 2.31
(glass), where ϵ1 and ϵ2 represent the first and second
layer’s electrical permittivity. Then, we calculate the
transmission through a three-layer medium, assuming
the graphene layer has a finite thickness (d � 0.335 nm)
and a complex effective permittivity; and ϵ1 � 1, ϵ3 � 1 1
or 2.31 (glass), where ϵ1 and ϵ3 represent the first and
third layer’s electrical permittivity. Figure 3 compares

the results for a wide range of wavelengths
500 nm < λ < 7.5 μm. Clearly, these two completely dif-
ferent approaches yield almost the same results, which
means that graphene can be successfully represented
by a finite thickness and effective complex permittivity
in 3D electromagnetic simulations and analyses.

In conclusion, a closed-form approximate expression
is developed for the optical conductivity of graphene.
The new formulation takes several factors into account
including wavelength, temperature, chemical potential,
and hopping parameter. Numerical results confirm the
accuracy of the formulation. Since effective complex
electrical permittivity derived from the optical conduc-
tivity successfully represents the graphene as a 3D
material, developed closed-form expression can help
all researchers working in different areas of nanotech-
nology who need graphene’s optical conductivity, com-
plex refractive index, or electrical permittivity.
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Fig. 2. σi calculated with Eq. (7) (blue dashed line), which has
a singularity at ℏω � 2μc, and with Eq. (9) (red solid line). ω is
taken as 3 eV.
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Fig. 3. Transmissivity for normal incident as a function of λ for
T � 300 K and μc � 0.2 eV where the top medium is vacuum
and the bottom medium is either vacuum or glass. Solid lines
and circles represent 2D and 3D approach results,
respectively.
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