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Abstract Precise ablation of metals using tightly fo-
cused femtosecond laser pulses with intensities close
to the damage threshold can yield sub-wavelength,
nanometer-sized holes or craters. These structures in
metals can exhibit plasmonic effects, thereby affecting
the interactions involved. We numerically simulate
light propagation inside such holes and model the abla-
tion process. We show that surface plasmon resonances
can be excited at near-infrared and visible wavelengths.
At resonance wavelengths, significant enhancement of
aspect ratio is possible. Our results show that plasmonic
effects are essential for the understanding of precision
laser processing of metals, and they can be exploited to
significantly enhance the performance of laser micro-
and nano-machining.

Keywords Laser ablation · Micro- and nano-cavities ·
Surface plasmons · Plasmonic enhancement

Introduction

Material processing with femtosecond laser pulses
yields structures with extraordinary precision due to
the minimization of thermal and shock effects [1]. In
this pulse duration regime, the ablation threshold is
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well determined and due to the involvement of non-
linear optical effects, structures even smaller than the
wavelength of the laser can be generated [2–4]. This
is achieved by exploiting the Gaussian transverse in-
tensity profiles and having only the center portion of
the beam exceed the ablation threshold. This method
allows very high precision, only limited by shot-to-shot
stability of the laser pulses. Nanometer-sized structures,
such as holes or grooves, have been demonstrated in
dielectrics, semiconductors, and metals. Remarkably,
in transparent materials the depth of the ablated holes
can even exceed the diffraction length of the focused
beams, which is explained by micro-scale filament for-
mation [5]. On the other hand, generation of high as-
pect ratio (depth/width) nanometer-sized holes in met-
als is hindered by strong absorption, and experimental
results typically yield small aspect ratios [2].

Propagation of light in holes surrounded by metals
can exhibit unusual properties due to excitations of
surface plasmons [6]. In particular, resonant excitation
and enhanced transmission of light can occur [7]. As a
result, in order to understand the nanohole formation
in metals through femtosecond laser ablation, plas-
monic effects have to be taken into account. In this
theoretical work, we show that, when holes in metals
are gradually formed by consecutive laser shots, they
essentially act as waveguides. The depth of the hole
is determined by attenuation in this waveguide. Re-
markably, as opposed to metallic waveguides with large
(compared with wavelength) radii [8], the attenuation
does not monotonically increase with decreasing hole
diameter. Instead, due to plasmonic effects, strong re-
duction in attenuation, hence significant enhancement
of hole aspect ratio can be achieved with proper choice
of experimental parameters. These resonant effects are
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achievable at practical wavelengths of near-infrared
and visible femtosecond lasers. Our results show that
plasmonic effects can be critical for the understanding
of laser micro- and nano-machining, and exploitation of
these effects can help increase the performance of the
process significantly.

In order to model femtosecond laser nano-drilling
of metals, we use Gaussian beams focused to near
diffraction limit. Since we are interested in behavior
close to the ablation threshold [3], we take the light
electric field amplitudes as multiples of the threshold
value. As explained below, the amplitude of the first
pulse incident on the surface determines the initial hole
radius. We assume that each pulse removes a thickness
determined by the skin depth. Consecutive pulses are
then guided and attenuated as they propagate inside
the tapered hole. The ablation process is terminated
when the light amplitude inside the hole falls below the
threshold.

Numerical Model

We start our analysis by considering a cylindrical hole
along the z-axis, with a constant radius of R. The hole
is filled with a dielectric material and the surrounding
is a dispersive medium with a complex permittivity.
Dielectric material is defined by its relative permittivity
(ε1) and relative permeability (μ1), whereas ε2 and μ2

denote the relative permittivity and permeability of
the dispersive medium, respectively. The propagating
modes of such a structure can be evaluated numerically
by solving a transcendental equation [9],
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where kt,1 and kt,2 are the propagation constants for
the dielectric core and metallic cladding regions in
the radial direction, respectively; kz is the longitudi-
nal component of the propagation constant; k0 is the
wavenumber in free space; Jm(·) and Hm(·) represent
mth-order Bessel and Hankel functions of the first kind,
respectively, and prime denotes differentiation with
respect to their argument. Note that the transverse

components of propagation constants can be found by

kt,i =
√

k2
0εiμi − k2

z for i = 1, 2 and imaginary part of
the kt,i always should be positive for the numerical
solution of Eq. 1.

We assume the dielectric core to be air and for
the surrounding medium, we consider three different
metals: copper, silver, or gold. We use the laser wave-
length of λ = 800 nm, which results in εCu

2 = −24.37 +
i2.39, ε

Ag
2 = −25.21 + i1.74, and εAu

2 = −20.28 + i2.07
according to experimental values for the optical con-
stants of these metals [10]. All the materials are non-
magnetic, i.e., μall = 1. We solved Eq. 1 numerically for
m = 1 and 20 nm ≤ R ≤ 1 μm. Fig. 1a, b show the phase
and attenuation constants as a function of core radius
R for the HE11 mode, respectively. Note that higher-
order modes (m > 1) are more lossy and the incom-
ing beam profile also couples much less efficiently to
them. For example, the attenuation constant for m = 2
mode differs roughly by one order of magnitude for the
regime we consider here. Therefore, we can safely focus
our consideration on the effect of the principle mode
m = 1.

Figure 1c depicts the imaginary parts of the trans-
verse propagation constants in metals, which are very
useful to estimate the skin depth, δ. One might use
analytical equations or full wave solvers to calculate
δ in a dispersive material for a given wavelength. For
example, in Fig. 1d, the decay of power, P = Re{E ×
H∗/2}, is plotted for a Gaussian beam incident on a
bulk copper as a function of distance from the air-
copper interface, which is located at z = 0 and the
upper half space (z > 0) is assumed to be copper. It is
clear that power in the copper decreases with e−13.2k0z,
which means that αCu

bulk = 13.2k0/2 = 6.6k0. In fact, this
result agrees with the result depicted as blue solid line
in Fig. 1c, where the imaginary part of the transverse
propagation constant saturates to 6.6k0. In other words,
when we calculate the dispersion diagram for a given
circular hole, we also obtain δ, that is used to profile
laser-drilled holes below. Note that from the same
figure, we can conclude that α

Ag
bulk = 5.121k0 and αAu

bulk =
4.617k0.

For the Gaussian transverse electric field amplitude
profile, we use E(ρ) = E0e−ρ2/D2

, where E0 is the max-
imum amplitude, ρ is the distance from the beam axis
and D is the beam radius, which is fixed to D = 2λ

throughout this study. Eth denotes the minimum ampli-
tude (ablation threshold) required to remove material
from the metal surface.

Next, we consider the effect of multiple laser pulses.
For femtosecond lasers with kHz repetition rates, time
between pulses is sufficiently large that we can assume
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Fig. 1 Propagation constant
as a function of core radius R
for the HE11 mode.
Wavelength λ = 800 nm;
infinite cladding made of
(blue) copper , (red) silver,
and (black) gold; dielectric
core is air. a Phase constant,
b attenuation constant,
c imaginary part of the
transverse propagation
constant in metal;
d attenuation of power in
bulk Cu, obtained with a
commercial full-wave
solver [11]
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each pulse is incident on the metal at the same tem-
perature, hence same physical properties. When the
first pulse comes to the surface, it removes a disk-like
layer of radius determined by the E0/Eth ratio, and
thickness determined by δ. When the next pulse comes,
it first propagates through the hole generated by the
previous, and at the end causes its own ablation. It
should be noted that the laser loses its power due to
ohmic losses as it propagates through the hole. Less
power means smaller active ablation region which leads
into a higher attenuation constant (see Fig. 1b) for
subsequent pulses. Hence, the hole radius is tapered
down and after some distance along the z direction,
the amplitude of the light becomes smaller than the
threshold value and the drilling stops. Once this crater-
like structure is formed, hole profile remains unaffected
by the forthcoming pulses. This physical process can
be modeled easily with an iterative algorithm. At the
initial step, radius of the ablated region can be found
from ρ0 = D| ln E0/Eth|0.5. Then we can calculate the
corresponding attenuation constant via a simple inter-
polation scheme from the solution of Eq. 1, depicted in
Fig. 1b. If we chose a �z value, that is small enough,
then we can assume that the power of the laser de-
creases with e−α�z. So in the first iteration, we obtain
the new radius from ρ1 = D| ln E1/Eth|0.5, where E1 =
E0e−α�z. A more general expression for the ith itera-

tion is ρi = D| ln Ei/Eth|0.5, where Ei = Ei−1e−αi−1�zi−1 .
In the consecutive steps, we update the power, attenu-
ation, and radius and we continue until the laser ampli-
tude, Ei, becomes smaller than the threshold. For the
selection of �z value, one can basically choose �z = δ.
However, for smoother results and especially for the
case where E0 is close to Eth, we should choose smaller
�z, for example �z = δ/100. Another advantage of
using small �z is its efficacy to represent a tapered
waveguide’s behavior by averaging the behaviors of
infinitely long cylinders as explained at the end of the
“Numerical Results” section.

Numerical Results

By applying the method explained above to bulk silver,
copper and gold, we generate the hole profiles for
different E0/Eth ratios at laser wavelength of 800 nm.
In Fig. 2, we plot three dimensional shape of the holes
drilled into silver for E0 = 1.02Eth and E0 = 1.05Eth,
where ρ0 = 230.6 and d = 51.5 nm for the former case
and ρ0 = 353.4 and d = 932.9 nm for the latter case
(d denotes the depth of the cavity). If we use gold, d
values become 38.4 and 586 nm for the same E0/Eth

ratios, respectively. If the material is copper, then d
values become 38.1 and 652.1 nm, respectively. Note
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Fig. 2 Numerically obtained
hole profiles in silver:
a E0 = 1.02Eth,
b E0 = 1.05Eth for
λ = 800 nm,
ε

Ag
2 = −25.21 + i1.74

that since we fixed the E0/Eth ratio, ρ0’s are same for
all metals.

In order to understand the effect of the laser wave-
length and plasmonic resonances, we analyze the crater
depth-wavelength dependency. We use gold as the host
material and we choose the initial laser power accord-
ing to E0 = Eth/e−ρ2

0 /D2
, for a fixed Eth value and set

of desired ρ0 values. Since we are interested in sub-
wavelength holes, we chose ρ0 values between 0.15 and
0.4 μm and applied the numerical method explained
above for 400 < λ < 1,100 nm. Similar to the extinction
cross sections of metal nanoparticles, the crater depth
has maxima around the metal’s plasmon frequency and
we refer to this as resonance depth, dres.

Figure 3a shows crater depth-wavelength depen-
dency for different ρ0 values. Each case is normalized
with the maximum depth occurring at the plasmonic
resonance, dres. Clearly, cavity depth changes dramat-
ically with respect to laser’s wavelength. For exam-
ple, for ρ0 = 0.4 μm case, dλ:800 nm = 6.2 × dλ:515 nm. In
Fig. 3a, we also observe the red shift in the resonance
wavelengths, as we increase the cavity opening. With
the help of a simple interpolation scheme, we estimate
the resonance values for wavelength and depth, and
we plot them as blue and red lines in Fig. 3b. We can
observe that, resonance depth increases exponentially
as we increase the diameter of the initial opening.
For comparison, in the same figure we also plot the
maximum depth for the case of constant wavelength of
515 nm (green line). Comparison with the resonant case
clearly underlines the enhancement of the hole aspect
ratio when appropriate wavelength is used.

In order to investigate the plasmonic enhancement
effects on the near-field profiles, we run two more
simulations using [11] as follows. We assume a tapered
cylindrical crater (in other words, a conical frustum
with ρinitial = 300 nm, ρfinal = 240 nm, and d = 250 nm)
drilled inside a gold layer with a thickness of 500 nm,
and we numerically calculate the total fields at two
different wavelengths: (a) λ = 515 nm and (b) λ =

800 nm. The results are shown in Fig. 4. In this figure,
electric field lines are depicted with arrows (since elec-
tric field lines are towards the x̂-axis, we see their
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Fig. 3 a Cavity depth vs. wavelength for ρ0 = 0.15, 0.2, 0.25,

0.3, 0.35, 0.4 μm. b The change in the resonance wavelength (blue
line) and depth at that resonance (red line), when we change
the width of the cavity opening. Green line depicts the maximum
depth for the case of constant wavelength of 515 nm
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Fig. 4 Simulation results:
Gaussian beam penetration
to a tapered cylindrical crater
(with ρinitial = 300 nm,
ρfinal = 240 nm, and
d = 250 nm) drilled inside a
gold layer a λ = 515 nm and
b λ = 800 nm. In both
subplots, the
semi-transparent
trapezoid shows the edges of
the conical frustum

heads). Bigger arrow (head) means stronger electric
field. The magnitude of the magnetic field multiplied
by the impedance of free space, η = 377 	, is shown
by color. In both simulations, the Gaussian beam width
is taken to be 2λ. In the absence of plasmonic effects,
we would expect to have more field confinement for
the case of smaller wavelength. However, as shown in
Fig. 4, we have the opposite result here: the fields with
longer wavelength penetrate more. This observation
agrees with the results shown with the cyan line in
Fig. 3a, where our theoretical model claims that for a
fixed ρ0, the depth of the crater for λ = 800 nm is more
than three times larger than the depth of the crater for
λ = 515 nm.

Lastly, we would like to emphasize that using small
�z (e.g., �z = δ/100) allows us to approximate the
loss in a tapered waveguide based on the knowledge
of attenuation in infinitely long circular cylinders. Let
us explain this perturbation-like approach by analyzing
the field attenuation for ρ = 300 nm and λ = 800 nm
case used in the previous example. According to our
model, electric field is decreased by 1.26% at the end of
206th step, which gives di ≈ 200 nm, ρi ≈ 240 nm, and
hence the power is decreased by 1.27 dB/μm through-
out this structure. The attenuation constant values for

infinitely long cylinders with radii of 300 and 240 nm
are 0.99 and 1.89 dB/μm, respectively. In other words,
our method yields an approximate effective attenuation
constant which is between these two extreme cases. In
order to evaluate the accuracy of this approach, we
use the commercial full wave solver [11] assuming a
hole tapered inside 200-nm thick Au layer with 300 nm
of initial radius and 240 nm of final radius, and we
calculate the attenuation constant as 1.22 dB/μm. The
difference between attenuation constants calculated
numerically and theoretically is only 4.1%, and this
difference does not have any significant effect on the
plasmonic enhancements we mentioned above.

Conclusions

In conclusion, we numerically analyze generation of
nanometer-sized holes in metals by tightly focused fem-
tosecond laser pulses with intensities close to the dam-
age threshold. We show that plasmonic effects in such
holes affect the ablation process. If the laser wavelength
is resonant, significant enhancement of aspect ratio is
possible.
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