
This article was downloaded by:[Liu,]
[Liu,]

On: 4 May 2007
Access Details: [subscription number 777802784]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Waves in Random and Complex
Media
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t716100762

Three-dimensional electromagnetic nonlinear inversion
in layered media by a hybrid diagonal tensor
approximation: Stabilized biconjugate gradient fast
Fourier transform method

To cite this Article: , 'Three-dimensional electromagnetic nonlinear inversion in
layered media by a hybrid diagonal tensor approximation: Stabilized biconjugate
gradient fast Fourier transform method', Waves in Random and Complex Media,
17:2, 129 - 147
To link to this article: DOI: 10.1080/17455030601016117

URL: http://dx.doi.org/10.1080/17455030601016117

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

© Taylor and Francis 2007

http://www.informaworld.com/smpp/title~content=t716100762
http://dx.doi.org/10.1080/17455030601016117
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

By
: [

Li
u,

] A
t: 

14
:3

1 
4 

M
ay

 2
00

7 

Waves in Random and Complex Media
Vol. 17, No. 2, May 2007, 129–147

Three-dimensional electromagnetic nonlinear inversion in

layered media by a hybrid diagonal tensor approximation:

Stabilized biconjugate gradient fast Fourier

transform method
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This paper presents an efficient three-dimensional nonlinear electromagnetic inversion method in a
multilayered medium for radar applications where the object size is comparable to the wavelength.
In the first step of this two-step inversion algorithm, the diagonal tensor approximation is used in
the Born iterative method. The solution of this approximate inversion is used as an initial guess for the
second step in which further inversion is carried out using a distorted Born iterative method. Since the
aim of the second step is to improve the accuracy of the inversion, a full-wave solver, the stabilized
biconjugate-gradient fast Fourier transform algorithm, is used for forward modelling. The conjugate-
gradient method is applied at each inversion iteration to minimize the functional cost. The usage of
an iterative solver based on the FFT algorithm and the developed recursive matrix method combined
with an interpolation technique to evaluate the layered medium Green’s functions rapidly, makes this
method highly efficient. An inversion problem with 32 768 complex unknowns can be solved with
1% relative error by using a simple personal computer. Several numerical experiments for arbitrarily
located source and receiver arrays are presented to show the high efficiency and accuracy of the
proposed method.

1. Introduction

Three-dimensional (3-D) electromagnetic inverse scattering has widespread applications in
geophysical exploration and biomedical imaging. The development of fast and accurate algo-
rithms is crucial for the solution of inverse scattering problems since usually the characteriza-
tion of the buried targets needs to be performed in situ. However, this may be a complicated
and challenging task, especially for buried objects. The challenges arise from the nonlinear,
non-unique, and ill-posed properties of the problem, as well as the forward solver. Over the
past few decades, several numerical techniques have been proposed to circumvent the inherent
difficulties in different inverse scattering applications, see [1–19] for some three-dimensional
implementations.
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130 B. Wei et al.

In inverse scattering, the main goal is the determination of the quantitative description of
the unknown scatterer(s), such as its size, location, permittivity, and conductivity, from mea-
surement data obtained away from the scatterer. The forward scattering solver is required in
most inversion methods [20–32]. For the numerical solution, the volume integral equation
is an appropriate choice since the reconstruction domain is an inhomogeneous medium in
most applications. It is well known that iterative methods, e.g. the conjugate-gradient (CG)
method and biconjugate-gradient (BCG) method, are much more efficient than direct full-
wave solvers, such as the Method of Moments (MoM) [21–32]. For this reason, the stabilized
biconjugate-gradient/fast Fourier transform algorithm (BCGS-FFT) has been chosen as a full-
wave forward solver [25, 27, 28]. However, for some applications, a good approximation
of the solution is of interest. In this direction, several approximation techniques have been
developed based on either the Born or the Rytov approximations over the past few decades,
such as the Born approximation, the extended Born approximation (EBA) [22,23,33–35], the
quasi-linear (QL) and quasi-analytical (QA) approximations [10–15], and the diagonal ten-
sor approximation (DTA) [19, 20]. DTA expresses the scattered fields inside objects as the
projection of the background fields via a second-rank scattering tensor (a reflectivity tensor)
which is approximated as a source-dependent diagonal tensor based on the principle of super-
position. Numerical tests show that DTA has high accuracy and wide range of applicability.
Note that DTA is an approximate method, so it is in general not as accurate as full-wave
solvers, but our results showed that it is satisfactory for contrasts significantly higher than
other approximations.

Once the fields for a given model are obtained, the scatterer can be reconstructed via
an inversion method such as the contrast source inversion (CSI) method [14, 16, 20, 29],
the Born (BIM) and distorted Born (DBIM) iterative methods [30, 38, 39], among others.
The CSI method constructs a sequence of contrast sources and contrasts iteratively without
using a forward solver. It is a stable method but requires a large number of iterations to
obtain desired accuracy. BIM and DBIM are commonly used iterative methods for the solu-
tion of nonlinear inverse scattering problem since they usually require fewer iterations. The
main difference between BIM and DBIM is that the latter updates the background Green’s
function for each iteration. Due to this difference, DBIM is computationally more expen-
sive than BIM, but it has the advantage of second-order convergence, whereas BIM has
only first-order convergence. This computational cost/convergence order trade-off can be
handled in two-step algorithms in different ways. One possibility is the frequency hopping
approach that uses lower frequency data as an initial guess to the higher frequency problem
[20, 40–43]. Since the Born approximation works well at low frequencies, one can obtain
better images and faster convergence after several steps of frequency hopping than using
the high-frequency data directly. Another possibility is that one can obtain a rough distri-
bution of the unknown contrast quickly by using an approximate method, such as DTA,
within BIM. This quickly obtained approximate solution can be used as an initial guess for
DBIM and hence the solution can be obtained by using fewer iterations than regular DBIM
implementation.

In this manner, we develop an efficient inverse scattering algorithm based on the BIM/DTA
and DBIM/BCGS-FFT algorithms to reconstruct both the permittivity and conductivity of
3-D dielectric objects buried in a lossy multilayered medium for the radar applications. In this
algorithm, inversion is a two-step process:

Step-1: Obtain the contrast distribution roughly via BIM, by using the approximate fields
obtained with DTA at each step of BIM.

Step-2: Use the contrast distribution obtained in the first step as an initial guess for DBIM
with BCGS-FFT as the forward solver for field data and Fréchet derivatives.
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Three-dimensional electromagnetic nonlinear inversion in layered media 131

In other words, in this two-step algorithm, we first obtain a rough approximation of the
inversion, then we improve its accuracy. Numerical results show that this is an efficient and
accurate method when the object size is comparable to the wavelength, even for the problems
with multiple scatterers and limited measurement data.

Different than the previous works of our research group [19, 30, 31] in which DBIM and
contrast-source inversion (CSI) method have been implemented, here we develop a hybrid
BIM/DTA and DBIM/BCGS-FFT algorithm. The developed recursive dyadic Green’s function
method makes it possible to solve the problems with source/receiver arrays located in any layer,
whereas in [19, 30, 31], they have both been limited in the first layer of the multi-layered
medium, even though in principle any locations are possible.

The structure of the paper is as follows: In section 2, the integral equations and the forward
modelling method, DTA, are briefly introduced first. Then, the procedure followed for the
implementation of inversion methods, BIM and DBIM, is described. The numerical results
are presented in section 3 and the conclusions are given in section 4.

2. Theory

Consider a general multilayer medium consisting of N + 1 layers separated by N planar
interfaces parallel to the xy plane, as shown in figure 1. Layer i exists between zi−1 and zi

and is characterized by relative permittivity εr,i and conductivity σi . Assume that the sources
and receivers may be in multiple layers, for example, in layer p and m, a reconstruction
domain, D, is chosen in layer q , which includes all the unknown objects to be detected. The
electrical properties of layer q , layer m and the objects are characterized by the complex

Figure 1. General scattering problem with 3D objects buried in a multilayer medium. The sources and receivers
are located in layers p and m, respectively. A reconstruction domain is chosen in layer q to enclose all the unknown
objects to be imaged. The electrical properties of layer q, layer m and the objects are characterized by complex
permittivities ε̃q , ε̃m and ε̃, respectively.
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permittivities ε̃q , ε̃m and ε̃, respectively, which are the combinations of the corresponding
material’s relative dielectric constant and conductivity. For example, the complex permittivity
for an inhomogeneous object is expressed as ε̃ = ε0εr − jσ/ω, where εr is the relative dielectric
constant of the object, ε0 the permittivity of free space, σ the conductivity of the object, j
the imaginary unit, and ω the angular frequency. In this paper, we assume that the magnetic
permeability μ in the target is the same as μq in the layered medium. The transmitter and
receiver arrays are arbitrarily located electric or magnetic dipoles.

2.1 Integral equations and forward modelling

The total electric field at r, inside the dielectric object, created by an exciting source located at
rT can be written as a summation of the incident and scattered fields based on the superposition
principle as follows

E(r, rT ) = Einc(r, rT ) + (
k2

q + ∇∇ · )∫
D

GAJ
qq (r, r′) · χ (r′)E(r′, rT )dr′, r ∈ D (1)

where GAJ
qq (r, r′) is an auxiliary dyadic Green’s function representing the magnetic vector

potential, the wavenumber in layer q is given by k2
q = ω2μq ε̃q and χ (r) is the contrast defined

as

χ (r) = ε̃(r)

ε̃q
− 1. (2)

Equation 1 is called the object equation, which is a Fredholm integral equation of the second
kind for the unknown field inside the object. In fact, equation 1 can also be written by using
the electric dyadic Green’s function, GE J

mq . However, GAJ
qq has weaker singularity than GE J

mq

[36]. Hence, in the forward modelling, we use GAJ
qq to solve equation 1 for the total electric

field inside D. Once the total electric field is obtained, the scattered field at any location on S
can be calculated as

Esca
m (r, rT ) = jωε̃q

∫
D

GE J
mq (r, r′) · χ (r′)E(r′, rT )dr′, r ∈ S (3)

where GE J
mq (r, r′) is the electric dyadic Green’s function at the observation point r in layer m

related to a unit current source at the point r′ in layer q. Equation 3 is called the data equation
which defines the scattered field at the observation point.

The solutions of these integral equations can be obtained numerically by using full-wave
solvers such as MoM and BCGS-FFT, or they can be approximated by using approximation
methods such as EBA and DTA. Approximate methods do not provide results as accurate as
full-wave solvers, but they can produce good approximations of the exact solution by using
much less CPU time and memory than full-wave solvers, which can be used as a good initial
guess for an iterative solver. In this work, we use DTA because of its high accuracy and wide
range of applicability to approximate the fields inside the objects. Briefly, the basic idea of
the DTA is to approximate the scattered field internal to the scatterer by a source-dependent
diagonal scattering tensor �(r, rT ) = diag[γx , γy, γz] so that the scattered field for r ∈ D can
be written as

Esca(r, rT ) ≈ �(r, rT ) · Einc(r, rT ) r ∈ D. (4)

The details of this method can be found in [19, 31, 32]. As mentioned before, in this work
we use DTA as a fast-forward solver/approximate method during each iteration of BIM to
produce an initial distribution of the contrast. In the second step of the inversion, we use
BCGS-FFT algorithm as a full-wave solver to form a hybrid DBIM/BCGS-FFT algorithm to
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Three-dimensional electromagnetic nonlinear inversion in layered media 133

improve the accuracy of the inversion. The details of the BCGS-FFT algorithm can be found
in [25, 27, 28].

2.2 The inverse scattering method

Assume that there are MT illuminating sources to excite the medium and MR receivers to col-
lect the scattered field. As a result, the total number of data points collected is M = MT × MR .
Suppose the reconstruction domain D is discretized into N small cells and the field quantities
are linear and the contrast function is constant in each cell. The integral equation 3, which re-
lates the measured data and the unknown contrast of the material, can be discretized as follows,

f(riR , riT ) = ωε̃q

N∑
k=1

GE J
mq (riR , r′

k) · E(r′
k, riT )χ (r′

k)�V (5)

with the trapezoidal rule, where f is a 3M-dimensional data column vector whose elements are
the given measured scattered electric field data, �V is the volume element, iR = 1, · · · , MR

and iT = 1, · · · , MT denote indices for the receiver and transmitter, respectively. For M
measurements and N discretized cells, 5 can be written compactly as

f = Ax, (6)

where x is an N -dimensional column vector of the contrast function χ , and A is a 3M × N
matrix whose elements are given by

Aik = jωε̃qGE J
mq (riR , r′

k) · E(r′
k, riT )�V (7)

where i = iR + (iT − 1)MR , and k = 1, · · · , N .
Since the total field E within the objects is an unknown function of the material contrast

function χ , 6 is a nonlinear equation. Moreover, the limited amount of information makes the
problem non-unique. This equation can be solved iteratively by using either the BIM [37] or
DBIM [38, 39]. In this work, we implement a two-step inversion as follows.

Step-1:DTA-BIM
Since the BIM has been shown to be an efficient and stable algorithm in the inverse scattering
problem, and DTA is an efficient and satisfactory approximation method, we can obtain a
rough distribution of the unknown contrast quickly by combining these two methods. In DTA,
equation 7 is approximated by

Aik ≈ jωε̃qGE J
mq (riR , r′

k) · [I + �(r′
k, riT )] · Einc(r′

k, riT )�V (8)

where the components of � are updated for the each iteration. The contrast function at the
(n + 1)th iteration, χn+1, is obtained by minimizing the following normalized cost function

Fn+1(x) = ||f − Mnxn+1||2S
||f||2S

+ γ 2 ||xn+1||2D
||xn||2D

, (9)

where γ is the regularization parameter, || · ||2S(D) denotes the L2 norm on the S or D domain.
This linear least squares problem is equivalent to the following expression which can be solved
by the conjugate gradient (CG) method(

M
†
nMn

||f||2S
+ γ 2

||xn||2D
I

)
xn+1 = M

†
nf

||f||2S
, (10)

where the superscript † denotes the complex conjugate transposition. The ill-posed behaviour
of the problem requires a nonzero regularization parameter. However, to be able to keep the
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134 B. Wei et al.

first term of the right hand side of 9 as the dominant term, γ should be much smaller than
1. For these reasons, γ is chosen as a constant number between 0.01 and 0.05 in this work.
Numerical results show that the solution does not change significantly when different γ values
are used within this interval.

Note that the electric dyadic Green’s function GE J
mq is evaluated for the layered background

without considering the existence of χ . This is done only once and stored for repeated use in
each iteration of BIM.

Step-2: BCGS-DBIM
The DBIM has a different procedure than BIM. The DBIM starts with the contrast distribution
obtained from the first step and calculates the fields. Then the contrast function is updated for
this new field distribution and this process is repeated until an acceptable solution is achieved or
until a predefined number of iterations is completed. However, unlike BIM, the DBIM requires
updating GE J

mq for the each iteration. For a given contrast distribution χ , we can calculate the
fields by evaluating the integral in 1 with BCGS-FFT which uses the regular layered media
Green’s functions. However, to update the contrast distribution for the given fields, we need to
obtain matrix A considering the distribution of xn in the layered background. So, we cannot
simply use the layered media Green’s functions. In this case, GE J

mq can be obtained by using
the reciprocity theorem from the total electric field which is calculated using BCGS-FFT by
replacing the source and field points.

In DBIM, the normalized cost function at the (n + 1)th iteration is defined as

Fn+1(δx) = ||δf − Mnδxn+1||2S
||f||2S

+ γ 2 ||δxn+1||2D
||xn||2D

, (11)

which is equivalent to the following expression
(

M
†
nMn

||f||2S
+ γ 2

||xn||2D
I

)
δxn+1 = M

†
nδf

||f||2S
, (12)

where δf denotes the error between the measured scattered field and the predicted scattered
field, and δxn+1 is the correction of xn during the (n + 1)th iteration.

The evaluation of the electric dyadic Green’s functions in layered background is a time-
consuming and memory-occupying step of the whole procedure. To speed up this process and
to reduce the memory requirement, we develop a recursive matrix method combined with an
interpolation technique. In this recursive matrix method, the components of the electric dyadic
Green’s function GE J (r, r′) are formulated as the combinations of six Sommerfeld integrals,
which only depend on ρ, z, and z′; where ρ =

√
(x − x ′)2 + (y − y′)2. So we only need to

calculate and store these six Sommerfeld integrals with respect to each z and z′ pair for some
ρ values in advance, and then we can calculate the Green’s functions at the desired points
with interpolating the pre-calculated components. This technique reduces the CPU time and
computer memory usage dramatically and makes it possible to solve a complicated problem
with arbitrarily located source/receiver arrays.

3. Numerical results

To demonstrate the efficiency of this two-step algorithm, we show the inversion results at
the end of each step. The solution of step-1 is the solution obtained by using BIM in which
DTA is used for the forward modelling at each iteration. The solution of step-2 is the solution
obtained using DBIM in which BIM solution is chosen as an initial guess and BCGS-FFT is
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Three-dimensional electromagnetic nonlinear inversion in layered media 135

used for the forward modelling at each iteration. For all the examples, the dimensions of the
voxels are chosen in such a way that the sampling density is always larger than 10 points per
wavelength (PPW) and the same voxel size is used to perform both simulation and inversion.

3.1 Four cuboids in a five-layer background

In this example, we have a five-layer background with four cuboids buried in the third layer,
see figure 1 for the general schema. The electric parameters of the background are: εr0 = 1.0,
σ0 = 0.0 S/m; εr1 = 3.0, σ1 = 0.01 S/m; εr2 = 2.0, σ2 = 0.01 S/m; εr3 = 3.0, σ3 = 0.01 S/m;
εr4 = 1.0, σ4 = 0.0 S/m. The interface positions are at z0 = 0.0 m, z1 = 0.02 m, z2 = 0.156
m and z3 = 0.176 m. The imaging domain D in the middle layer is centred at (0.0, 0.0, 0.088)
m and has the dimensions of 0.106×0.106×0.106 m3. The operating frequency of the vertical
electric dipoles is f = 2 GHz. Inside the reconstruction domain D, there are four cuboids with
the electric parameters εr = 4.0 and σ = 0.2 S/m. The objects centred at (0.0, −0.028, 0.088)
m and (0.0, 0.028, 0.088) m have the dimensions of 0.021 × 0.017 × 0.03 m3. The objects
centred at (−0.028, 0.0, 0.088) m and (0.028, 0.0, 0.088) m have the dimensions of 0.017 ×
0.021 × 0.03 m3.

The 2-D planar source array is in the top layer with a distance of 0.02 m above z0. It has
8 × 8 sources which are uniformly distributed within the range from −0.28 m to 0.28 m both
in x and y directions. The receiver array is in the bottom layer with a distance of 0.02 m below
z3 and has the same configuration with the source array. In this case, only z component of the
measured scattered fields is used, so the total number of information is M = 4096. In all the
examples, the synthetic measured scattered fields are generated by the BCGS-FFT method.
The imaging domain D is divided into 25×25×25 voxels, which results in 17 PPW sampling
density. The total number of the complex unknowns to be reconstructed is N = 15 625.

Figure 2 compares the relative error of the two-step DTA/DBIM algorithm with the one
obtained by using the DBIM algorithm only (background field and contrast are used as the
initial guess for the solution) as a function of iteration number; figures 3 and 4 show the
reconstructed dielectric constant and conductivity on the xy plane and xz plane at the end
of the first and second steps of the inversion, respectively. The effect and importance of the

Figure 2. Comparison of the relative error for the hybrid method (two-step DTA-BIM/BCGS-DBIM method ab-
breviated as DTA/DBIM in the figure) and the regular DBIM algorithm as a function of iteration number for the
example described in Section 3.1.
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136 B. Wei et al.

Figure 3. Reconstructed images at the end of the first step of the two-step algorithm for a five-layer background
model with four cuboids with the electric parameters εr = 4.0 and σ = 0.2 S/m buried in the middle layer where
εr,2 = 2.0 and σ2 = 0.01 S/m. (a) and (b) depict reconstructed dielectric constant and conductivity, respectively, on
the xy plane at z = 8.8 cm. (c) and (d) depict the reconstructed dielectric constant and conductivity, respectively, on
the xz plane at y = 0.0.
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Figure 4. Same as figure 3, except that they are obtained at the end of the second step of the two-step
algorithm.
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first step of the proposed DTA/DBIM method is clearly depicted in figure 2. By the help of a
good initial guess, we can obtain 1% accuracy by using 10 iterations only with the proposed
method, however when we use DBIM only, we need more than 40 iterations to obtain the
same accuracy. When we compare figures 3 and 4, we can see that the imaging results of
DBIM are much more precise than BIM, as expected. Figure 4 shows that the locations and
the sizes of the four cuboids are accurately reconstructed, even though the information is much
more limited compared with the number of unknowns. We can also see from figure 4 that the
resolutions in the x and y directions are higher than that in z direction because the information
is collected only on the xy plane. This case successfully demonstrates the capability of our
proposed imaging technique in the reconstruction of 3-D objects buried in layered media.

3.2 Application in microwave biomedical imaging

The following example is an application of our proposed imaging technique in microwave
biomedical imaging to detect breast tumours, which was studied previously for homogeneous
background media in [17, 18], among others. In [17] we use the combination of the extended
Born approximation (EBA) and CSI method in 2D. In [18] the CSI method is used for 3D
imaging assuming the background is homogeneous. Thus, in these previous studies, we did
not consider the chest wall effects. In this work we include such effects by simplifying the
background as a layered medium. Note that even though the chest wall is not flat and has
a finite extent, the layered medium background assumption provides a more realistic model
than a homogeneous medium assumption.

For the dielectric properties of the breast tissue utilized in this model, the reader is referred
to [17] and the references therein. Here, we have a three-layer background with four cuboids
in the top layer. The electric parameters of the background are: εr0 = 16.0, σ0 = 0.16 S/m;
εr1 = 20.0, σ1 = 0.2 S/m; εr2 = 1.0, σ2 = 0.0 S/m. The interface positions are at z0 = 0.01
m, z1 = 0.2 m. The imaging domain D in the top layer is centred at (0.0, 0.0, −0.08) m and
has the dimensions of 0.16 × 0.16 × 0.16 m3. The operating frequency of the vertical electric
dipoles is f = 800 MHz. In D domain, there are four cuboids located at (0.04, 0.04, −0.08),
(0.04, −0.04, −0.08), (−0.04, 0.04, −0.08), and (−0.04, −0.04, −0.08) m. For the first and
forth cuboids, εr = 32 and σ = 0.8 S/m. For the other two, εr = 48 and σ = 0.4 S/m.

The sources and receivers are evenly distributed over five surfaces of D, leaving the bottom
surface open. There are nine sources or receivers on each surface, so the total number of
collected data points is M = 45 × 45 = 2025. The imaging domain D is divided into 32 ×
32 × 32 voxels, which results in 13 PPW sampling density. The total number of the complex
unknowns to be reconstructed is N = 32 768.

Since the top layer’s relative permittivity is quite large with respect to free space, the usage
of dielectric contrast, χd , might be useful for the comparison where χd can be defined as
follows

χd = εr

εr,b
− 1. (13)

First let us focus on the case when the dimensions of the objects are 2×2×2 cm3. Figure 5
shows the cross-sections of the 3-D reconstructed results at the end of each step. We observe
that the locations of the four cuboids are accurately reconstructed and the imaging patterns
for the dielectric contrast and conductivity are very close to the model. Clearly, the second
step of the inversion improves the accuracy. For this case, the maximum dielectric contrast
has reached to 0.69 and the maximum conductivity has reached to 0.37 S/m after 40 iterations
using BCGS-DBIM, and the relative data error has been decreased to 0.5%. Although the ratio
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Three-dimensional electromagnetic nonlinear inversion in layered media 139

Figure 5. Reconstructed images for a three-layer background model with four cuboids in the top layer when the
dimensions of the objects are 2 × 2 × 2 cm3. The first and fourth cuboids have the same electrical properties: χd,c1 =
χd,c4 = 1, σc1 = σc4 = 0.8 S/m. The second and third cuboids have the same electrical properties: χd,c2 = χd,c3 = 2,
σc2 = σc3 = 0.4 S/m. The conductivity of the image domain is 0.16 S/m. (a) and (b) depict the reconstructed dielectric
contrast function and conductivity, respectively, at the end of first step of the presented algorithm. More accurate
images are obtained at the end of the second step shown as (c) and (d) for χd and σ , respectively.
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M/N in this case is much smaller than the previous example, the resolution of this example
is much better due to the volumetric distribution of the sources and receivers.

Figures 6 and 7 show the cross-sections of the 3-D reconstructed results at the end of
each step when the dimensions of the objects are 1 × 1 × 1 cm3 and 0.5 × 0.5 × 0.5 cm3,
respectively. For both cases, the imaging results keep the same patterns as the model, however
the reconstructed electrical parameter gets closer to the background parameters as we decrease
the scattered fields by decreasing the size of the objects. For the former case, the maximum
dielectric contrast has reached 0.82 and the maximum conductivity has reached 0.187 S/m
after 40 iterations. For the latter case, the maximum dielectric contrast has reached 0.01 and
the maximum conductivity has reached 0.163 S/m after 40 iterations.

In the following case, the dimensions of the first and second objects are 2×2×2 cm3, while
the dimensions of the third and fourth objects are 1×1×1 cm3. Figure 8 gives the cross-sections
of the 3-D reconstructed results at the end of each step. The reconstructed dielectric contrast
and conductivity of the third and fourth objects are much smaller than the value of the first and
second objects. For this case, the imaging patterns for the dielectric contrast and conductivity
of the two big objects are very close to the model. The maximum dielectric constant has
reached 0.63 and the maximum conductivity has reached 0.36 S/m after 40 iterations.

In the last case, the first example of this section is repeated. However, to appraise the influ-
ence of the wrong background information, the background is assumed to be homogeneous
(εr,b = 16 and σb = 0.16 S/m) during the inversion. As can be seen from figure 9 the recon-
structed images are as successful as the ones shown in figure 5 because of the lower contrast
between layers 1 and 2, and the loss in the second layer. This example clearly indicates that
this hybrid method of capable of obtaining satisfactory inversion results even without having
a 100% accurate background information. However, as the layer contrasts increase and loss
decreases, one expects that the mismatch effects will become more significant, see [44] for
more examples.

Figure 10 shows the convergence of the relative error in the second step of the inversion
as a function of iteration number for the different cases presented in this example. By using
a good initial guess provided by the first step, 1% accuracy can be obtained using 40 or less
iterations.

All of these results demonstrate that the spatial properties of the buried objects can be
reconstructed. However, the accuracy of the reconstructed dielectric constant and conductivity
dramatically depends on the size of the objects.

4. Discussions

Both simulation and inversion programs were compiled with the Fortran 77 UNIX compiler
on a Dell Optiplex GX260 desktop with Intel P4 2.4 GHz processor and 1024M RAM. The
same voxel sizes are used in the forward and inversion. However, it should be noted that
two different methods are employed to synthesize (BCGS-FFT) and to invert data (first by
the DTA/BIM); the DTA is significantly different from the full-wave BCGST-FFT method,
even though the subsequent inversion is refined by the DBIM/BCGS method. Since, this
algorithm is specifically developed for radar applications where the object size is comparable
to the wavelength, and, at least 10 PPW sampling density is used for the image domain
discretization to obtain accurate results, this hybrid algorithm is capable of imaging objects
bigger than 0.1λ × 0.1λ × 0.1λ. The usage of higher sampling density makes it possible to
reconstruct smaller objects. However, the higher is the sampling density, the higher is the CPU
time and memory requirement. Due to the efficiency of the iterative solver (BCGS) and very
low CPU time and memory requirements (O (N log N ) and O(N ), respectively, where N is the
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Figure 6. Same as figure 5 except the dimensions of the objects are 1 × 1 × 1 cm3. The reconstructed dielectric
function (a) and conductivity (b) after the first step, and after the second step (c) and (d).
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Figure 7. Same as figure 5 except the dimensions of the objects are 0.5×0.5×0.5 cm3. The reconstructed dielectric
function (a) and conductivity (b) after the first step, and after the second step (c) and (d).

number of the unknowns) of the FFT algorithm, we could solve problems with 32 768 complex
unknowns by using a simple PC. Moreover, due to high accuracy of the hybrid method and
the size of the object(s) with respect to wavelength, we have not experienced any inversion
yielding negative values of dielectric permittivity or electrical conductivity.
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Three-dimensional electromagnetic nonlinear inversion in layered media 143

Figure 8. Reconstructed images for a three-layer background model with four cuboids in the top layer when the
dimensions of the first two objects are 2 × 2 × 2 cm3 and the dimensions of the other two objects are 1 × 1 × 1 cm3.
χd,c1 = χd,c4 = 1, σc1 = σc4 = 0.8 S/m. χd,c2 = χd,c3 = 2, σc2 = σc3 = 0.4 S/m. The conductivity of the image
domain is 0.16 S/m. (a) and (c) depicts the reconstructed contrast function at the end of first and second steps of
the two-step algorithm, respectively. (b) and (d) are reconstructed conductivity images at the end of first and second
steps, respectively.
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Figure 9. Reconstructed images for a three-layer background model with four cuboids in the top layer when the
dimensions of the objects are 2 × 2 × 2 cm3. To appraise the influence of a wrong background information, the
background is assumed to be homogeneous (εr,b = 16 and σb = 0.16 S/m) during the inversion. χd,c1 = χd,c4 = 1,
σc1 = σc4 = 0.8 S/m. χd,c2 = χd,c3 = 2, σc2 = σc3 = 0.4 S/m. (a) and (b) depicts the reconstructed dielectric contrast
function (χd = [(εr /εr,b) − 1]) and the conductivity (σ ), respectively, at the end of first step of the hybrid method.
(c) and (d) are the reconstructed contrast function and conductivity images, respectively, at the end of the second step
of the inversion.
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Figure 10. Relative data error of the second step (BCGS-DBIM) of the presented algorithm as a function of iteration
number for five different cases presented in Section 3.2.

It should be noted that this hybrid method is constructed on the volume integral equation
and FFT algorithm, the volume integral equation solver is not an appropriate choice to solve
the problems with little volume current, when the conductivity is very high. As a result,
the surface integral equation solvers may be more appropriate for the problems with very
conductive objects. For all the presented numerical examples, the conductivity of the object
is chosen relatively small because of this reason.

5. Conclusion

An efficient two-step electromagnetic nonlinear inversion method based on the hybridization
of the diagonal tensor approximation (DTA) and stabilized biconjugate-gradient fast Fourier
transform (BCGS-FFT) method has been developed for the radar and biomedical imaging
applications to reconstruct 3-D objects in a multilayered medium. This two-step, hybrid method
is referred to as the DTA/BCGS method. In the first step, we combine DTA with the Born
iterative method (BIM) to obtain an approximation of the contrast rapidly. Numerical results
show that at the end of the first step, 10% relative error can be obtained. This inversion is
then used in the second step as the initial solution and is further refined by the distorted Born
iterative method (DBIM) with the BCGS-FFT method as the forward solver. The relative
error can be decreased to 1% using 40 iterations or less. The efficiency and accuracy of
the proposed method has been supported with several numerical experiments, including a
microwave biomedical imaging example, for arbitrarily located source and receiver arrays.
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