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This paper presents an improved diagonal tensor approximation (DTA) and its hybridization with
the stabilized biconjugate-gradient fast Fourier transform (BCGS–FFT) algorithm to solve a volume
integral equation for three-dimensional (3D) objects in layered media. The improvement in DTA is
obtained for lossy media through a higher-order approximation. The interaction between the dyadic
Green’s function and the contrast source is efficiently evaluated by the (FFT) algorithm through the
convolution and correlation theorems. For the hybrid implementation, the DTA solution is used as
an initial estimate and a preconditioner in the BCGS–FFT algorithm in order to solve the forwards
modelling problem accurately with fewer iterations than the conventional BCGS–FFT algorithm. The
accuracy and convergence of the DTA, BCGS–FFT and hybrid DTA/BCGS–FFT methods are com-
pared extensively with several numerical examples. Numerical results show that (a) the improved DTA
formulation enhances the accuracy and (b) the DTA/BCGS–FFT method can produce results as accu-
rate as the conventional BCGS–FFT but with fewer iterations if the contrast is moderate. For very high
contrasts, the hybrid method does not seem to improve further on the BCGS–FFT iteration convergence.

1. Introduction

Fast and accurate solution of electromagnetic scattering by inhomogeneous three-dimensional
(3D) objects of arbitrary shape embedded in a planarly layered medium is one of the most
challenging research topics in subsurface sensing because of the complex interactions of
waves with the layered background and objects. Such solutions are widely used in subsurface
sensing applications such as geophysical exploration, landmine detection and environmental
characterization. Direct solution with the finite-element method (FEM) and finite-difference
method requires a large number of unknowns because the layered-medium background has
to be included in the model. The method of moments (MoM) is a conventional way to solve
this scattering problem using the volume electric field integral equation [1,2]. However, MoM
is only suitable for small problems owing to its O(N 2) memory usage and O(N 3) central
processing unit (CPU) time requirements [or O(KN2), if an iterative solver is used], where N
is the number of the unknowns and K is the number of iterations. To speed up the solution
process, several iterative solvers have been developed based on the fast Fourier transform
(FFT) algorithm such as the conjugate-gradient (CG) FFT, the biconjugate-gradient (BCG)
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FFT, and the stabilized biconjugate-gradient (BCGS) FFT method [3–19]. Even though these
methods are more efficient than MoM, they are still not fast enough for very large-scale
problems.

Over the past few decades, several approximation techniques have been developed based on
either the Born or Rytov approximations. The well-known first-order Born approximation is
very efficient for weak scattering and small objects, but is not applicable to high contrasts. Its
improved version is the extended Born approximation (EBA), which was originally proposed
by Habashy et al. [20] and further developed by Torres-Verdin and Habashy [21–23], Yu
and Carin [24], Cui et al. [9–11], and Liu et al. [12–19, 25]. Quasi-linear (QL) and quasi-
analytical (QA) approximations are other examples of improved Born approximations [26–
29]. Numerical results show that the EBA, QL and QA have better accuracy than the Born
approximation; these methods have been successfully applied to forward and inverse problems.

Recently, Song and Liu proposed a novel diagonal tensor approximation (DTA) for 3D
objects buried in layered media [30–32], which expresses the scattered fields inside objects
as the projection of the background fields via a second-rank scattering tensor (a reflectivity
tensor). This scattering tensor is approximated as a source-dependent diagonal tensor based on
the principle of superposition. Numerical tests show that this novel approximation has better
accuracy and a wider range of applicability than the existing approximations.

In the present work, we first define a new approximation formula for the scattered field to
improve the accuracy of DTA by using modified Born series as it is done in [28, 29]. Then,
based on the high accuracy and wide range of applicability of DTA and the high efficiency
of hybrid methods [13, 14], we combine the DTA with stabilized BCGS–FFT algorithm to
form a hybrid DTA/BCGS–FFT algorithm (abbreviated as DTA–BCGS). The inhomogeneous
objects are located completely within one single layer in the multilayer medium, so both
DTA and BCGS are accelerated by using the FFT algorithm in all directions. For the hybrid
implementation, the DTA solution is used as an initial estimate and a preconditioner in the
BCGS–FFT algorithm in order to solve the forward modelling problem accurately with fewer
iterations than the conventional BCGS–FFT algorithm. The accuracy and convergence of the
DTA, BCGS–FFT and hybrid DTA–BCGS are compared extensively. Numerical results show
that the modified DTA formulation improves the accuracy with respect to the one proposed
in [30]. Moreover, the hybrid DTA–BCGS method can produce results as accurate as the
conventional BCGS–FFT but with fewer iterations.

The outline of current paper is as follows: first the brief formulations of integral equations,
the modified DTA and its hybridization with BCGS–FFT are presented. Next, several numer-
ical examples are used to verify/compare the accuracy and the efficiency of the new DTA
and hybrid DTA–BCGS algorithms with respect to some other approximation or full-wave
algorithms. Finally, some discussions and conclusions are given.

2. Formulation

2.1 Integral equations

In this work, it is assumed that the measurements are taken on some surface S in layer m and
the inhomogeneous objects are contained inside domain D in layer q. The electrical properties
of layer q, layer m and the objects are characterized by the complex permittivity ε̃q , ε̃m and
ε̃, respectively, which are the combinations of the corresponding material’s relative dielectric
constant and conductivity. For example, the complex permittivity for an inhomogeneous object
is expressed as ε̃ = ε0εr − jσ/ω, where εr is the relative dielectric constant of the object,
ε0 the permittivity of free space, σ conductivity of the object, j the imaginary unit and ω
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the angular frequency. In the present paper, we assume that the magnetic permeability μ in
the target is the same as μq in the layered medium, and thus there are no induced magnetic
sources. The time dependency of ejωt is implied.

The fundamental integral equations are

Esca
m (r) = jωε̃q

∫
D

GE J
mq (r, r′) · χ (r′)E(r′)dr′, r ∈ S (1)

E(r) = (
k2

q + ∇∇ · )∫
D

GAJ
qq (r, r′) · χ (r′)E(r′)dr′ + Einc(r), r ∈ D (2)

where χ (r) is the contrast defined as

χ (r) = ε̃(r)

ε̃q
− 1 (3)

and GE J
mq (r, r′) is the electric dyadic Green’s function at the field point r in layer m related

to a unit current source at the point r′ in layer q, GAJ
qq (r, r′) is an auxiliary dyadic Green’s

function representing the magnetic vector potential, and the wavenumber in layer q is given
by k2

q = ω2μq ε̃q . Equation (1) is called the ‘data equation,’ which defines the scattered field
at the observation point. Equation (2) is called the ‘object equation,’ which is the Fredholm
integral equation of the second kind for the unknown field inside the object. Note that when
the total electric field inside D is obtained, the observed scattered field can be calculated by
equation (1). However, here we are trying to find out a simplified form representing the total
electric field within D instead of solving equation (2) directly.

The evaluation of the layered-medium Green’s functions is one of the most important and
time-consuming ingredients of the integral equations [10, 33]. Here, we have developed a
recursive matrix method to calculate the Green’s functions efficiently. In this method, we
define three coefficient matrices, whose elements are some basic Sommerfeld integrals, in
such a way that any Green’s function component can be expressed as a combination of these
elements. The recursive calculation of coefficient matrices by using the boundary conditions at
the layers interfaces makes it possible to calculate the Green’s functions, simply by changing
the positions of the source terms in the matrix equations. Note that, in equation (2) GAJ is used
instead of GE J in order to avoid singularity, as it is done in [4] for free space and [16, 18, 19]
for layered media. Furthermore, the calculation of Green’s functions has been accelerated by
singularity subtraction [33].

2.2 The diagonal tensor approximation (DTA)

The total electric field at r created by an exciting source located at rT can be written as a
summation of the incident and scattered fields based on the superposition principle [34] as
follows

E(r, rT ) = Einc(r, rT ) + Esca(r, rT ). (4)

The scattered field can be approximately related to the incident field by a source-dependent
scattering tensor �(r, rT ), i.e.

Esca(r, rT ) ≈ �(r, rT ) · Einc(r, rT ). r ∈ D. (5)

Then the total field can be written as

E(r, rT ) ≈ [I + �(r, rT )] · Einc(r, rT ). r ∈ D, (6)



58 B. Wei et al.

where I is an identity matrix. When the cross-polarization is weak, it can be assumed that
each component of the scattered field or the total field is only related to the corresponding
component of the incident field. According to this assumption, the scattering tensor can be
approximated by the following diagonal form

� ≈

⎡
⎢⎣

γx 0 0

0 γy 0

0 0 γz

⎤
⎥⎦ . (7)

This approximation is called DTA. For the analytical expressions of the unknown compo-
nents of the diagonal scattering tensor, the localized nonlinear approximation is used, similar
to [20]. The details of this procedure and some important discussions can be found in [30]
and [31]. Simply, the scattered field in equation (2) can be approximated by using the DTA as
follows,

Esca(r, rT ) = (
k2

q + ∇∇ · )∫
D

GAJ
qq (r, r′) · χ (r′)

·[I + �(r′, rT )] · Einc(r′, rT )dr′. r ∈ D. (8)

Numerically it is shown that DTA has better accuracy than the existing approximations such
as EBA for the same electric contrast while its computational speed is essentially the same
[30, 31]. In [28] and [35–37], it is shown that the modified Born series or modified Neumann
series has better convergence than Born series for lossy media. In this work, to improve the
accuracy of the DTA by constructing higher-order DTA in a manner similar to the QA and
QL series for QA and QL approximations in [28] and [29], respectively, we define a new
approximation formula for the scattered field as follows

Esca(r, rT ) = α
(
k2

q + ∇∇ · )∫
D

GAJ
qq (r, r′) · χ (r′)

[I + �(r′, rT )] · Einc(r′, rT )dr′ (9)

+ (1 − α) �(r, rT ) · Einc

where

α = 2σq

(σ + σq ) + jω(ε − εq )
. (10)

Note that outside the object domain D, α = 1, equation (9) reduces to equation (8) as the
contrast is zero there. From the mathematical point of view, equation (8) and equation (9)
can be seen as zeroth-order and first-order DTA approximations, respectively, and as it has
been done in [28], the higher orders can be obtained. In the present work, we only consider
the first-order approximation that improves the accuracy in lossy media with respect to the
zeroth-order approximation as it has been shown in [28].

2.3 The hybridization of DTA with BCGS–FFT algorithm for integral equations

Equation (2) can be written compactly as

L[D̃(r)] = Einc(r), r ∈ D (11)

where D̃(r) = ε̃(r)E(r)/ε̃q , and L is a linear operator defined as

L[ ] = ε̃q [ ]

ε̃(r)
− (

k2
q + ∇∇ · ) ∫

D
GAJ

qq (r, r′) · χ̃ (r′)[ ]dr′ (12)



Accurate simulation of 3D inhomogeneous objects 59

where the contrast χ̃ (r) is defined as

χ̃ (r) = ε̃(r) − ε̃q

ε̃(r)
. (13)

The discrete form of equation (11) can be obtained by using Galerkin’s method. In this
work, both basis and testing functions are “roof-top” functions [4, 12]. The resulting discrete
linear system can be written as

L̃[d] = einc (14)

where d and einc are vectors of the unknown electric flux density and incident electric field,
respectively, which are defined at the centre of each cell surface. Equation (14) can be solved
iteratively using the BCGS method, and the FFT technique is applied during each iteration.
The details of this procedure can be found in [15] and [16]. To reduce the number of iterations
used in the BCGS–FFT method, the solution obtained from DTA can be used as an initial
estimate and/or a preconditioner for the BCGS–FFT, which forms the hybrid DTA/BCGS–FFT
method, or simply DTA–BCGS. The algorithm of this method can be explained as follows.

Assume that EDTA is the approximation of the solution obtained with DTA and D̃DTA =
ε̃(r)EDTA/ε̃q . By using the linear operator defined in (12), both equations, (8) and (9) can be
written as

L−1
DTA[Einc(r)] = D̃DTA(r), r ∈ D (15)

and after discretization equation (15) becomes

L̃−1
DTA[einc] = dDTA, (16)

where L̃−1
DTA is the DTA linear operator, and dDTA is a vector representing the electric flux

density under the approximation of DTA. By combining equations (14) and (16), we obtain
the following equivalent linear system

L̃−1
DTAL̃[d] = dDTA.

To solve equation (17), DTA solution is used an initial estimate, i.e. d0 = dDTA, and then
residuals are computed as follows

r0 = dDTA − L̃−1
DTAL̃[d0], ρ0 = 
 = ω0 = 1, v0 = p0 = 0.

With the choice of an arbitrary vector r̃0 such that (r̃0, r0) �= 0, e.g., r̃0 = r0 or r̃0 = dDTA,
in the i th iteration, we compute

ρi = (r̃0, ri−1), β = 
ρi/(ωi−1ρi−1), pi = ri−1 + β(pi−1 − ωi−1vi−1),

y = L̃pi , vi = L̃−1
DTAy, 
 = ρi/(r̃0, vi ), s = ri−1 − 
vi , y = L̃s,

t = L̃−1
DTAy, ωi = (t, s)/(t, t), di = di−1 + 
pi + ωi s, ri = s − ωi t.

The iterative solver is ended when ‖s‖/‖dDTA‖ or ‖ri‖/‖dDTA‖ becomes smaller than the
given error criterion.

3. Discussions

The preconditioner, L̃−1
DTA, can be obtained efficiently by using the FFT algorithm and

equation (17) can be solved efficiently by the BCGS–FFT method. By using the DTA re-
sult as an initial estimate and a preconditioner, this hybrid DTA–BCGS algorithm converges
much faster than the regular BCGS–FFT method if the contrast is moderate. It can be shown
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Table 1. Abbreviations.

Abbreviation Method

DTA1 DTA by using equation (8).
DTA2 DTA by using equation (9).
DTA2–BCGS Hybrid DTA–BCGS method by using the DTA2

result as an initial estimate and a preconditioner.
BCGSini Hybrid DTA–BCGS method by using the DTA2

result as an initial estimate.

from equation (17) that for low electric contrasts, dDTA is very close to d and hence the
operator L̃−1

DTAL̃ is very close to the identity matrix. However, the increase of the electric
contrast decreases the accuracy of DTA and the preconditioning loses its efficiency. In the
following examples only moderate contrast problems with high accuracy requirement are
considered.

4. Numerical examples

To verify the improvement in diagonal tensor approximation, and the efficiency/accuracy of the
hybrid method, four different methods have been used in addition to the regular BCGS–FFT
solution. These methods and the abbreviations used for them are given in table 1.

For the following examples, the permeability of the background and the objects are assumed
to be μ0.

4.1 Experiment Set-ups

There are six different experiment set-ups: first three examples are chosen to illustrate the
microwave detection problems with a high-operating frequency (HF), and in the last three
examples low-operating frequencies (LF) are used to illustrate the induction problems. The
experiment set-ups are described below.

Set-up 1: A homogeneous cuboid in a three-layer medium, HF
A homogeneous cuboid with the dimensions of a = 1.6 m, b = 1.6 m and c = 1.15 m is

located at the bottom layer of a three-layer background, shown as figure 1(a). The center of the
cuboid is at (2.05, −2.05, 1.425) m. The interface positions are at z0 = 0.0 m and z1 = 0.5 m,
the distance between z1 and the top of the cuboid is d = 0.35 m. The electrical parameters of
the background are: εr0 = 1.0, σ0 = 0.0 S/m; εr1 = 1.5, σ1 = 0.002 S/m; εr2 = 2.0, σ2 = 0.01
S/m. The electrical parameters of the cuboid are εr = 8.0 and σ = 0.02 S/m. A vertical unit
electric dipole located at (2.05, −2.05, −0.425) m is used as a source with 10 MHz operating
frequency.

Set-up 2: A homogeneous cylinder in a five-layer medium, HF
In this example, a homogeneous cylinder, with the radius of 0.8 m and height of 1.15 m,

is located in the middle layer of a five-layer background, shown as figure 1(b). The center
of the cylinder is located at (2.05, −2.05, 1.425) m; z0 = 0.0 m, z1 = 0.5 m, z2 = 2.35 m,
and z3 = 2.85 m, the distance between z1 and the top of the cylinder is d = 0.35 m. The
electrical parameters of the background are: εr0 = 1.0, σ0 = 0.0 S/m; εr1 = 1.21, σ1 = 0.01
S/m; εr2 = 6.0, σ2 = 0.03 S/m; εr3 = 1.21, σ3 = 0.01 S/m; εr4 = 1.0, σ4 = 0.0 S/m. The
electrical parameters of the cylinder are εr = 2.0, σ = 0.015 S/m. The location of the vertical
electric dipole is (2.05, −2.05, −0.425) m. The operating frequency is 100 MHz.
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Figure 1. (a) A homogeneous cuboid in a three-layer medium. (b) A homogeneous cylinder in a five-layer medium.
(c) A two-layer tilted cylinder in a five-layer background. (d) A two-layer deformed cylinder in a five-layer medium.

Set-up 3: A two-layer tilted cylinder in a five-layer medium, HF
Figure 1(c) shows a two-layer tilted cylinder with the height of 1.0 m which is centered

at (2.05, −2.05, 1.75) m in a five-layer background. z0 = 0.0 m, z1 = 0.5 m, z2 = 3.0 m
and z3 = 3.5 m. The electrical parameters of the background are: εr0 = 1.0, σ0 = 0.0 S/m;
εr1 = 1.21, σ1 = 0.01 S/m; εr2 = 2.0, σ2 = 0.05 S/m; εr3 = 1.21, σ3 = 0.1 S/m; εr4 = 1.0,
σ4 = 0.0 S/m. The cylinder is tilted with 30◦ angle on the x–z plane. The radius and electrical
parameters of the inner cylinder are ra = 0.4 m, εra = 8.0, σa = 0.15 S/m. The radius and
electrical parameters of the outer cylinder are rb = 0.8 m, εrb = 4.0, σb = 0.08 S/m. The
location of the electric dipole is (2.05, −2.05, −0.425) m, in the top layer. The operating
frequency is f = 100 MHz.

Set-up 4: A homogeneous cuboid in a three-layer medium, LF
For the simulation of the detection problems within the induction domain, a unit magnetic

dipole is located at (2.15, −2.05, −0.425) m in a three-layer medium, which contains a homo-
geneous cuboid, as shown in figure 1(a). All the physical quantities are the same as set-up 1,
except the ones mentioned here. The conductivities of the layers are: σ0 = 0.8 S/m; σ1 = 0.05
S/m; σ2 = 1.0 S/m. The conductivity of the cuboid is σ = 0.33 S/m. The frequency is 20 kHz.
Since the frequency is low, the influence of the dielectric constant can be neglected.
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Set-up 5: A homogeneous cylinder in a five-layer medium, LF
A unit vertical magnetic dipole, operating at f = 20 kHz, is located at (2.1, −2.1, −0.425)

m in a five-layer medium, which contains a homogeneous cylinder, as shown in figure 1(b).
All the physical quantities are the same as set-up 2, except the ones mentioned here. The
conductivities of the background are: σ0 = 0.04 S/m; σ1 = 1.0 S/m; σ2 = 0.5 S/m; σ3 = 1.0
S/m; σ4 = 0.05 S/m. The conductivity of the cylinder is σ = 1.0 S/m.

Set-up 6: A two-layer deformed cylinder in a five-layer medium
A two-layer deformed cylinder with the height of 2.3 m is centred at (2.05, −2.05, 1.75)

m in a five-layer medium, depicted in figure 1(d). The cylinder is tilted with 30◦ angle on the
x–z plane. The radius and conductivity of the inner cylinder are ra = 0.2 m, σa = 0.4 S/m.
The radius and conductivity of the outer cylinder are rb = 0.4 m, σb = 1.2 S/m. z0 = 0.0 m,
z1 = 0.5 m, z2 = 3.0 m and z3 = 3.5 m. The conductivities of the background are: σ0 = 0.8
S/m; σ1 = 0.04 S/m; σ2 = 1.0 S/m; σ3 = 0.08 S/m; σ4 = 0.6 S/m. The location of x directed
the magnetic dipole is rT = (2.05, −2.05, −0.425) m in the top layer and the frequency is 20
kHz.

4.2 DTA versus improved DTA

Figures 2(a–f) show the magnitudes of Ez or Ey obtained with four different methods (DTA1,
DTA2, DTA2-BCGS, and BCGS-FFT) for set up 1–6, respectively. Figure 2(f) also shows
the incident electric field along the line centering the deformed cylinders for set-up-6 in the
absence of the cylinders. For low frequency examples ( f = 20 kHz), see set-up 4–6 for the
details, DTA1 results are very close to the full-wave solutions; but when we look at the DTA2
results, they are almost same as the full-wave solutions, figures 2(d–f). When we increase
the frequency ( f = 10 MHz for set up 1, f = 100 MHz for set-up 2 and 3), the difference
between DTA1 and BCGS-FFT solutions increases. This is also true for DTA2 solutions;
however DTA2 results are more accurate than DTA1 results. These numerical experiments
clearly demonstrate that the modification in the diagonal tensor improves the accuracy of the
approximation.

Another observation is that the results obtained by using the DTA2 result as an initial
estimate and a preconditioner, shown as DTA2-BCGS, are the same as the BCGS–FFT results,
as expected.

Note that Ez is discontinuous across the interface of the tilted cylinder for set-up 3.

4.3 Efficiency of the hybrid DTA-BCGS algorithm

In the previous part, we show that the improved DTA is more accurate than the previous DTA
implementation. Here, we demonstrate the efficiency of the hybrid DTA–BCGS algorithm,
which uses the DTA2 result as an initial estimate and a preconditioner. For comparison purpose,
we also show the results using DTA as the initial solution of BCGS-FFT, which is denoted as
BCGSini in the figures.

Figures 3(a–f) shows the residual errors in the BCGS–FFT, BCGSini and DTA–BCGS
algorithms as a function of iteration number for set-ups 1–6, respectively. In all examples, it is
clear that the DTA–BCGS is the most efficient algorithm with respect to the other algorithms.
The number of iterations used for DTA–BCGS is almost half of the ones used for BCGS–FFT
in order to obtain the desired accuracy level. Using DTA result as an initial estimate helps to
decrease the iteration number but it is not as effective as the preconditioning. This examples
show clearly the efficiency and the necessity of the preconditioning.
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Figure 2. The magnitude of Ez or Ey obtained with four different methods (DTA1, DTA2, DTA2-BCGS and
BCGS–FFT). (a) |Ez | as a function of x at y = −2.05 m and z = 1.85 m for set-up 1. (b) |Ez | as a function of x at
y = −2.05 m and z = 1.85 m for set-up 2. (c) |Ez | as a function of z at x = 2.0 m and y = −2.05 m for set-up 3.
(d) |Ey | as a function of x at y = −2.05 m and z = 1.6 m for set-up 4. (e) |Ey | as a function of x at y = −2.05 m
and z = 1.6 m for set-up 5. (f) |Ey | as a function of z along the line centering the deformed cylinders for set-up 6.

In all examples, the first residual error of DTA–BCGS or BCGSini solution is smaller than
the first residual error of BCGS–FFT solution which also shows that DTA is more accurate
than the Born approximation.

Note that figure 3(f) shows the residual errors in BCGS–FFT and BCGSini only, as a
function of iteration number. For this example, even using DTA1 result as an initial estimate
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Figure 3. Residual errors in the BCGS-FFT, BCGSini and DTA-BCGS algorithms as a function of iteration number
for set-up 1–6.

for BCGS-FFT algorithm helps to reduce the iteration number to meet the required error
tolerance. Very similar results to the ones presented here have been obtained for a z-directed
magnetic dipole; they are not shown here for brevity.

5. Conclusion

First, the formulation of an improved diagonal tensor approximation is presented and its accu-
racy was compared with the original DTA proposed by Song and Liu in [30]. Numerical results
show that the improved DTA is more accurate than the original DTA. Second, we develop
a hybrid DTA–BCGS algorithm for the volume integral equation to improve the accuracy
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and efficiency of the simulation of 3D electromagnetic scattering problems in layered media.
For the hybrid implementation, DTA is combined with the BCGS–FFT algorithm by using
its solution as an initial estimate and as a preconditioner for the BCGS–FFT algorithm. It is
shown that the hybrid DTA–BCGS method can produce results as accurate as the conven-
tional BCGS–FFT but requires fewer iterations than the BCGS–FFT method. As a result, the
new DTA has better accuracy and wider range of applicability than the original DTA, and
its hybridization with BCGS–FFT has better convergence with respect to the conventional
BCGS–FFT.
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