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Abstract—A spectral integral method is presented for elec-
tromagnetic scattering from dielectric and perfectly electric
conducting (PEC) objects with a closed boundary embedded in a
layered medium. Two-dimensional layered medium Green’s func-
tions are computed adaptively by using Gaussian quadratures.
The singular terms in the Green’s functions and the non-smooth
terms in their derivatives are handled appropriately to achieve
exponential convergence. Numerical results, compared with the
ones obtained by using other methods, demonstrate the spectral
accuracy and high efficiency of the proposed method. They also
confirm that the spectral integral method (SIM) is applicable to
concave objects.

Index Terms—Boundary integral method, Green’s functions,
layered media, spectral integral method (SIM).

I. INTRODUCTION

FOR a homogeneous scatterer with an arbitrary geometry in
a layered medium, the surface integral equation method is

a powerful tool to calculate the scattered electromagnetic fields.
The classical methods for solving such integral equations are
the method of moments (MOM) [1]–[5], fast multipole method
(FMM) [6]–[10], and adaptive integral method [11]–[16].

Recently, Liu et al. [17] proposed a spectral integral method
as an alternative way of solving the surface integral equation
efficiently for a homogeneous scatter in free space and for
periodic structures. This algorithm is related to the fast method
originally developed by Bojarski [18] for sound-soft circular
cylinders, and extended by Schuster [19] to multilayer cir-
cular cylinders, and by Hu [20] to sound-soft or sound-hard
smooth cylinders. Liu et al. [17] further extended the SIM to
arbitrarily-shaped smooth dielectric cylinders, and to periodic
structures such as photonic crystals. The idea behind this
method is the use of fast Fourier transform (FFT) algorithm
and the subtraction of singularities in Green’s functions to
achieve a spectral accuracy in the integral. Here, we extend
this method to arbitrarily-shaped smooth dielectric and PEC
cylinders embedded in layered media by using two-dimen-
sional (2-D) layered-medium Green’s functions. To avoid the
discontinuous behaviors of the fields and Green’s function (i.e.,
the functions or their derivatives being discontinuous) across
the layer interfaces in the problems where the scatterer resides
in several layers, in this work the object must locate completely
within one single layer in the multilayered medium. Future
research will investigate objects traversing several layers where
such discontinuities must be properly treated.
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The outline of this paper is as follows: first the brief formu-
lation of 2-D layered-medium Green’s function is presented.
Next, the implementation of SIM for layered media is described.
Finally, the accuracy and the efficiency of the method are veri-
fied with several numerical examples. This method can also be
extended to periodic structures [17]. The potential extension to
three dimensions (3-D) is under investigation.

II. 2-D GREEN’S FUNCTIONS

Consider a general multilayer medium consisting of layers
separated by interfaces parallel to the axis. Layer

exists between and ( and
) and is characterized by relative complex permittivity

and relative permeability , the wavenumber inside the
layer is given by . The time dependency of is
implied.

In the absence of a scatterer, the electric or magnetic field at
due to a unit line source at can be calculated by

using layered-medium Green’s functions. The formulation of
the Green’s function for 2-D is very similar to the 3-D case, and
the reader may refer to [1], [21], [22], and [28] for the details
of derivation. Essentially, by transforming the problem from
the spatial domain to spectral domain, each layer can be repre-
sented by a uniform transmission line having the same physical
properties; hence the electric and magnetic fields can be inter-
preted as voltage and current, respectively, on a transmission
line. By using this transmission line analogy, Green’s functions
in the spectral domain, called transmission line Green’s func-
tions (TLGF), can be derived easily. The spatial domain Green’s
function is the inverse transformation from spectral domain to
spatial domain and is known as a Sommerfeld integral given by

(1)

where is the type ( is either or )
Green’s function relating the field at in layer due to a
unit source at in layer ; is its spectral domain
counterpart (TLGF) which has a closed form expression de-
pending on the locations of the source and field points

(2)

the subscripts refer to the source layer and field layer
, and is either or for or cases, respec-

tively.

0018-926X/$20.00 © 2006 IEEE
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A.

When the source and field points belong to the same layer

(3)

In the above,

(4)

(5)

where is the type generalized reflection coefficient which
can be calculated recursively by [21]

(6)

where is the thickness of th layer, , and
denotes the type Fresnel reflection coefficient given by

(7)

Note that,

(8)

(9)

This means that terms may converge to a number which
is different than 0. The subtraction of integrand’s asymptote
increases its decaying speed. , the asymptote of

, can be given as

(10)

(11)

(12)

The subtracted terms’ contribution in spatial domain can be
written as

(13)

where .

Fig. 1. Sommerfeld integration path in the complex k plane, where k =
maxfRe(k ; k ; � � � ; k )g, � > 0, and � > 0. In the numerical examples,
� = 0:2 and � = 0:001 are used.

B.

When the source and field points are in different layers and
, the spectral domain Green’s function can be computed

by using voltage/current transfer functions as follows:

(14)

where denotes the type transfer function between a point
in layer and the lower boundary of that layer, ; and

denotes the type transfer function between and the
upper boundary of the th layer,

(15)

(16)

Multiplication of these two terms with gives
. Note that when .

The formulation for is very similar to the case where
and can be obtained easily by using symmetry.

For the 3-D case, it is shown that the efficiency of the numer-
ical integration can be improved by deforming the integration
path in the complex plane [21], [23]. As shown in Fig. 1,
the maximum displacement from the real axis is set to .
Since the first integration segment requires little computation
time compared to the whole Sommerfeld integral, we have not
optimized the choice of . In the following numerical exam-
ples, we chose and . The reader is referred
to [29] for more discussions on the integration path. By using
the deformed Sommerfeld integration path depicted in Fig. 1,
the spatial domain Green’s functions can be calculated numeri-
cally. In this work, to speed up the numerical evaluation of the
Sommerfeld integrals, we subtract the direct field term between
the source and field points and the so-called “quasi-dynamic”
term in the reflection (i.e., the term at the limit when )
when , and the “quasi-dynamic” transmission term when

. (One 3-D version of such subtraction is reported in
[24].) The extraction of the quasi dynamic terms improves the
convergence of the spectral integrals for the reflected field in
the case where the source and the observation points are near
the layer interfaces (i.e., when either or in (5) are small
with respect to the minimum wavelength).
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III. SPECTRAL INTEGRATION METHOD FOR LAYERED MEDIA

For the case, the 2-D Helmholtz equation for the scalar
field is

(17)

where subscript indicates the region outside or inside
the object, is the source excitation,

for the th layer and for the
dielectric object. Since the formulation and all the examples are
presented here for the case, the superscript is omitted for
the rest of the formulation. In this work, we assume the scatterer
is entirely within one layer.

For a smooth dielectric object embedded in a layered
medium, the boundary integral equations on the surface of the
scatterer are

(18)

(19)

for , where is assumed zero, is the incident wave
from outside the object (i.e., , ). is the outward
unit normal, and . Inside the dielectric object, the
homogeneous space Green’s function and its normal derivative
can be written as

(20)

(21)

Outside the object, the layered-medium Green’s function is re-
quired and it can be written as a summation of two separate
terms: the primary field term and the remaining reflec-
tion term :

(22)

Then its normal derivative can be written as

(23)

where describe the surface of the
scatterer. The primary field term and its derivative are the
same as (21) except should be replaced by , and

(24)

(25)

where

(26)

(27)

(28)

(29)

are the so-called “quasi-dynamic” terms. With such subtrac-
tions, the Sommerfeld integral can be calculated more rapidly.

With the above Green’s functions and their derivatives, (18)
can be rewritten in terms of a parameter along the boundary:

(30)

where and
. Since the scatterer has a smooth surface, and and

are smooth and periodic functions of on the closed
boundary, they can be approximated by truncated Fourier series
as

(31)

(32)
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where and are Fourier coefficients. By substituting them
into (30), we have

(33)

The above integrals are simply Fourier transforms and can be
calculated using FFT. However, to be able to obtain spectral
accuracy, singular terms in the Green’s functions and the non-
smooth terms in their derivatives must be handled carefully. As
described in [20], two infinitely smooth functions are defined as
follows:

(34)

(35)

In [17], the free space Green’s functions are used. For our
problem here, the layered-medium Green’s functions must be
used. Since the singularity occurs only for the primary field
term when source and field points are in the same layer, one can
add the layered-medium Green’s function (without the primary
field term) and its derivative directly to the smooth terms,

and , respectively. Uniformly sampled
points along the surface of the scatterer are used as testing
points as in the point-matching (collocation) in MOM. After
testing, (33) becomes

(36)

where ; is the index of a testing point on the
boundary, and the index of the Fourier series; and
are Fourier transforms of the smooth part of the
and , respectively; and

are Fourier transforms of the non-smooth term of the
and , respectively, and can be calculated

via convolution of the logarithmic functions with the Bessel
functions [17], [20].

Equation (19) can be discretized in the same way. Then (36)
and the equation corresponding to (19) can be written in a matrix
form as follows:

(37)

(38)

where ,
, , and are vectors of and

, respectively.
By using (37) and (38), and can be obtained easily.

Then the scalar field and its normal derivative
on the boundary of the scatter can be computed by using and

via FFT. Once the problem is solved on the boundary of the
scatter, at any point (inside or outside the object), the scattered
field and its normal derivative can be computed by using the
left-hand sides of (18) and (19).

Similar to the free space case, since the above operations
involve the FFT of smooth functions, the accuracy of and

increases exponentially as the number of the discrete
points increases, a basic property of the FFT algorithm. For the
layered medium case, however, the accuracy also depends on
the accuracy of the layered medium Green’s functions. Here,
they are calculated adaptively, hence error-controllable to high
accuracy.

In this work, the biconjugate-gradient (BCG) method is used
to solve the matrix equation which requires CPU time
and memory, where is the number of unknowns and

is the number of iterations. Since the main purpose of this
work is the reduction of the number of unknowns , we have
not implemented any acceleration methods (such as the fast mul-
tipole method and adaptive integral method) to further reduce
the computation time and storage requirements.

IV. NUMERICAL RESULTS

A. A Circular Cylinder in Air

To show the accuracy and efficiency of the method, a circular
dielectric object in free space is chosen as the first example as it
has an analytical solution. An infinite dielectric circular cylinder
with radius and is excited with a
plane wave at impinging at an angle
along the -direction. The receiver points are chosen along the

line, from to . Fig. 2 shows
the comparison between the SIM result and analytical solution
for the scattered field. For this example, 64 points along the
boundary of the object are used, and excellent agreement has
been observed.

Fig. 3 shows the error convergence curve and the CPU time
versus the number of discretization points per wavelength
(PPW) on the dielectric object. The error decreases exponen-
tially with the number of discretization points, confirming that
the SIM has a spectral accuracy. The result shows that even
with a small discretization number (or at 2.7 PPW) on
the boundary of the cylinder, the relative error is smaller than
1%.
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Fig. 2. Example A: Comparison of the SIM and analytical results for the real
and imaginary parts of the scattered field for the free space case.

Fig. 3. Error and execution time versus the number of discretization points per
wavelength for the free space case (Example A).

B. A Circular Cylinder in a Five-Layer Medium

The second example is an infinite circular dielectric cylinder
embedded in a 5-layer medium depicted in Fig. 4. All layers
have different permittivity values and thickness. A line source
is located at ( 0.12, 0.12) m, and the object with ,

, and is embedded in the third layer.
Green’s functions for the background have been calculated with
a relative error tolerance of relative. Fig. 5 shows the com-
parison of the field inside the object calculated with SIM and
2-D volume integral equation (VIE) approach [25], [26]. The
test points are chosen along the axis, from
to . A very good agreement has been observed be-
tween the SIM and VIE results.

Fig. 6 compares the scattered field outside the object
calculated with SIM and 2-D volume integral equation (VIE) ap-
proach [25], [26]. The test points are chosen along the
axis, from to . Excellent agreement
is observed between the SIM and VIE results.

Another issue studied is the continuity of the scattered field
across layer interfaces. Fig. 7 shows the comparison of scattered
field along the axis, from to

(from first layer to the last one). Both SIM and VIE
results show expected continuity across layer interfaces.

The convergence of error with the number of discretization
PPW is shown in Fig. 14. Since the Green’s functions for the

Fig. 4. Example B: Infinite circular dielectric cylinder embedded in a 5-layer
medium.

Fig. 5. Field E inside the scatterer along the (0.0:�0.04,0.04) m, for the cir-
cular dielectric object in a 5-layer medium in Fig. 4 (Example B).

Fig. 6. Scattered field along the (�0.12:0.12,0.12) m for the circular dielectric
object in a 5 layer medium in Fig. 4 (Example B).

background have been calculated with relative error toler-
ance, the minimum relative error that can be obtained is approx-
imately in this level. Clearly, 2.7 PPW guarantees 1% accuracy.
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Fig. 7. Scattered field along the (0.06,�0.12:0.12) m for the circular dielectric
object in a 5-layer medium in Fig. 4 (Example B).

Fig. 8. Elliptical cylinder embedded in a 9-layer medium for Example C.

C. An Elliptical Dielectric Object in a Nine-Layer Medium

In the next example, an elliptical cylinder ( and
) is embedded in a 9-layer medium shown in

Fig. 8. The elliptical object is defined as

where , , and .
A line source with is located at (0,0.3) m in the

first layer. The receivers are located on axis from
to (from top layer to the bottom layer).

Fig. 9 shows the comparison of the real and imaginary parts of
the scattered field obtained by using 16 points (4.16 PPW) and
128 points (33.27 PPW) on the object.

The convergence of error with the number of discretization
PPW is obtained by using the case with 33.27 PPW as a refer-
ence and is shown in Fig. 14. Again, the minimum relative error
that can be obtained is limited by the accuracy of the Green’s
functions for the background layered medium. Clearly, 4 PPW
guarantees 1% accuracy.

Fig. 9. Example C: Real and imaginary parts of the scattered field from the
elliptical dielectric object in the 9-layer medium in Fig. 8.

Fig. 10. Example D: Real and imaginary parts of the scattered field from the
elliptical PEC object in the 9-layer medium in Fig. 8.

D. An Elliptical PEC Object in a Nine-Layer Medium

The fourth example is similar to the ones presented in [27] to
demonstrate the validity of the method for PEC objects. Since
the tangential component of the electric field is zero on the
boundary, the integrals in (18) and (19) only have the first terms.
In this case, a PEC object with the same elliptical shape as in the
previous example is embedded in the 9-layer medium depicted
in Fig. 8. All other properties are the same as in the previous
case. Fig. 10 compares the scattered field obtained by using 12
points (4.3 PPW) and 128 points (45.9 PPW) on the object. The
convergence of error with the number of discretization PPW is
obtained by using the case with 45.9 PPW as a reference and is
plotted as Example D in Fig. 14. Note that 1% accuracy can be
obtained with 2.7 PPW sampling.

E. A Complex Object in a Nine-Layer Medium

A complex cylinder ( , ) shown in
Fig. 11 (left panel) is embedded at center of the 9-layer medium
in Fig. 8. The object is defined as follows:
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Fig. 11. Complex convex cylinder (left panel) for Example E, and a concave
cylinder (right panel) for Example F.

Fig. 12. Example E: Real and imaginary parts of the scattered field for a com-
plex object shown in the left panel of Fig. 11 in the nine-layer medium in Fig. 8.

where . The frequency is 1 GHz and the circumfer-
ence of the object is equal to . A line source is located
at (0,0.12) m. The receivers are located on axis from

to (from top layer to the bottom layer).
Fig. 12 shows the comparison of the real and imaginary parts of
the scattered field obtained by using 32 points (5.0 PPW) and
256 points (40.1 PPW) on the object.

The convergence of error with the number of discretization
PPW is obtained by using the case with 40.1 PPW as a refer-
ence and is shown in Fig. 14. Again, 2.7 PPW guarantees 1%
accuracy.

F. A Concave Object in a Five-Layer Medium

In order to study the performance of the SIM for concave
objects, we replace the circular object in Example B with a
concave cylinder defined by and

and shown in the right panel of Fig.
11. All other parameters are the same as in Example B. Fig. 13
shows the comparison of the real and imaginary parts of the scat-
tered electric field along the (0.06, 0.12: 0.12) m obtained by
using 24 points (4.6 PPW) and 256 points (49.0 PPW) on the ob-
ject. The convergence of error with the number of discretization
PPW is obtained by using the case with 49.0 PPW as a reference
and is shown in Fig. 14.

In this work, we have used for parameterization of the ob-
ject surface; alternatively, one can directly use the arc length for
parameterization.

All the above examples demonstrate that the method has spec-
tral accuracy for smooth objects. For the objects with corners,
the method will be still valid but the expected accuracy will de-

Fig. 13. Example F: real and imaginary parts of the scattered electric field along
(0.06, �0.12: 0.12) m for a concave object in the right panel of Fig. 11 in a
5-layer medium in Fig. 4.

Fig. 14. Convergence of error with the number of discretization points for ex-
amples B through F .

crease from the smooth objects. Future studies will investigate
non-smooth objects.

V. CONCLUSION

We develop a spectral integral method for homogeneous
dielectric objects and perfect conductors with closed smooth
boundary embedded in a layered medium. The high accuracy
and the efficiency of the method has been demonstrated. 1%
accuracy can be obtained with about three points per wave-
length sampling. Numerical results also confirm that the SIM
is applicable to concave objects. The method can be further
extended to periodic structures and to three dimensions, as well
as to objects traversing layer interfaces.
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