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Singularity Subtraction for Evaluation of
Green’s Functions for Multilayer Media
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Abstract—This paper presents an efficient method to evaluate
the two- and three-dimensional multilayered medium Green’s
functions for general electric and magnetic sources. Without
finding any surface poles or steepest descent path, a special sub-
traction procedure is applied to each term of the Sommerfeld
integrands to make them rapidly decreasing functions of .
The contributions of the subtracted terms are calculated analyti-
cally. The remaining integrals are computed adaptively by using
Gaussian quadratures. The accuracy of the method has been
confirmed by comparison with many examples in literature, and
the high efficiency has been verified.

Index Terms—Green’s functions, layered media.

I. INTRODUCTION

I N ORDER to solve layered-medium problems in application
areas such as geophysical prospecting and remote sensing

[1]–[3], interconnect simulations, microstrip antennas and
monolithic microwave integrated circuits [4]–[6], and vector
and scalar Green’s functions must be computed. Straightfor-
ward numerical integration methods are not efficient for these
integrals because of the slowly decaying and highly oscillating
behavior of the Sommerfeld integrands [7]–[11]. Extensive
research has been done to accelerate this process through
methods such as the fast Hankel transform (FHT) approach
[12], [13], the window function approach [14], the steepest
descent path (SDP) approach [2], and the discrete complex
image method (DCIM) [15]–[29].

It is shown that the efficiency of the numerical integration
can be improved by deforming the integration path in the com-
plex plane and using the Hankel functions pair instead of
Bessel functions [11]. Deforming the integration path according
to Cauchy’s theorem avoids the singularities; it has been used
in most recent methods. The usage of the Hankel functions pair
helps for the faster convergence, especially when the source and
field points are close to each other. In terms of the computa-
tion time, the numerical integration method is the slowest one
with respect to other methods. In the SDP approach, the inte-
gration path is also deformed [2]. In addition to path deforma-
tion, leading order approximation has been used to increase the
speed of integration. The difficulty related to the implementa-
tion of this method is the determination of the steepest path for
the media having many layers.
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The window function approach utilizes a window function
as a convolution kernel to the time-domain Green’s function
[14]. Similar to the effect of low-pass filtering used in signal
processing, convolution with a window function in the spatial
domain accelerates the decay of integrand in the Sommerfeld
integration.

The DCIM, which can be described as the approximation of
the spectral-domain Green’s function in terms of complex expo-
nentials whose Hankel transform can be obtained analytically, is
one of the most popular methods developed to approximate the
Green’s functions efficiently. It has been improved by the help of
several researchers over the last two decades. In the very begin-
ning, the primary and quasi-static field terms are subtracted from
the integrand and the remaining integrand is approximated with
the complex images via Sommerfeld identity. However, since
the method was constructed on the Sommerfeld identity, it is
not applicable to problems having source and field points in dif-
ferent layers because of the dependence in the Sommerfeld
identity. Furthermore, the method was valid only for the sym-
metrical (i.e., diagonal) components of the dyadic Green’s func-
tions (DGFs). Hojjat et al. extended the method to the nonsym-
metrical (i.e., off-diagonal) components by using a semi-infinite
integral of Bessel functions [25]. More recently, Eselle and Ge
[29] proposed a new closed-form formulation based on a class of
semi-infinite integrals of Bessel functions and applied the gen-
eralized pencil of function (GPOF) method to approximate the
remaining integrand with another set of complex images (having
only dependence), making the method valid for any kind of
source-field point combination. Aksun has shown that, by using
a multilevel DCIM, it is possible to obtain very accurate results
for printed structures without subtraction of the primary and
quasi-static field terms [23]. However, the lack of surface-wave
extraction often results in errors in the far-field region because
the surface waves behave in the manner of cylindrical waves
and, thus, it is inappropriate to approximate them by spher-
ical waves. In other words, DCIM without any extraction might
work efficiently for printed-circuit structures, but cannot handle
the problems such as aerospace applications where the object
size is comparable to or much larger than the wavelength. Ling
proposed a new method to achieve the surface-wave extraction
by evaluating a contour integral recursively in the complex
plane [26]. Moreover, some researchers developed new formu-
lations to increase the efficiency of the method for the method of
moments (MOM) implementation. For example, Liu et al. [28]
reformulated the formulation-C Green’s functions for multilay-
ered media to extract the -dependent part when the source and
observation points are in different layers.

All of these methods have some advantages and disadvan-
tages. In this paper, a new extraction procedure is presented,
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Fig. 1. N -layer medium with source and field points in layer n and layer m,
respectively.

which can be incorporated in these methods to improve the ef-
ficiency. This procedure can be described as the improved ver-
sion of the extraction procedure implemented in DCIM, and is
valid for any kind of source-field point combination. The sub-
traction procedure is implemented appropriately for each indi-
vidual term of the integrand and the contribution of the sub-
tracted terms is calculated analytically. However, for the sake
of robustness, instead of approximating the remaining integral
with complex images, the remaining integral is calculated nu-
merically by using Gaussian quadratures. The results of this
method have been validated by comparison with many exam-
ples in literature, and the high efficiency has been verified.

II. THEORY

Consider a general multilayer medium consisting of layers
separated by planar interfaces parallel to the -plane, as
shown in Fig. 1. Layer exists between and and is char-
acterized by relative permittivity and relative permeability

. In a linear medium, electric and magnetic fields due to ar-
bitrary electric and magnetic currents ( and , respectively)
can be expressed as

(1)

(2)

where is the DGF relating -type fields at due
to -type currents at [33]. Once the DGFs have been calcu-
lated for the layered medium, the electric and magnetic fields at
any point can be obtained with the superposition principle. For
the details of the derivation procedure of the multilayer media
Green’s functions, the reader may refer to [33] and [35]. Basi-
cally, by transforming the problem from the spatial to spectral
domain, each layer can be represented by a uniform transmis-
sion line having the same physical properties; hence, the electric
and magnetic fields can be interpreted as voltage and current,
respectively, on a transmission line. By using this transmission-

line analogy, Green’s functions in the spectral domain, called
transmission-line Green’s functions (TLGFs), can be calculated
easily. The spatial-domain DGF is the inverse transformation
from the spectral to spatial domain and is known as a Sommer-
feld integral given by

(3)

where , is the th-order Bessel function,
, is the spatial-

domain Green’s function relating the field at in
layer due to a point source at in layer , and

is the spectral-domain counterpart.

III. SPATIAL-DOMAIN GREEN’S FUNCTIONS

There are several types of DGFs [33]. In this paper, the tradi-
tional form of DGFs for vector potential is chosen as an ex-
ample and the formulation of the spectral-domain Green’s func-
tions is presented in the Appendix. The spatial-domain Green’s
functions are obtained by taking the Sommerfeld integral given
in (3). In general, we have two typical integrals for the spa-
tial-domain Green’s functions associated with the vector and
scalar potentials

(4)

for symmetrical components of the Green’s function, and

(5)

for nonsymmetrical components of the Green’s function, where
contains the generalized reflection coefficients and

some constants depending on the type of Green’s functions in-
volved. Below we describe the singularity subtraction for dif-
ferent scenarios depending on where the relative locations of
the source and field points.

A. Source and Field Points in the Same Layer

When the source and field points are located in the same layer
, the Green’s function can be separated into the primary

and reflected field. The singularity subtraction is only needed
for the reflected field, as the primary field terms are obtained
directly from the expressions for a homogeneous medium. In
this case, for the primary-field term, is constant
and equal to and, as in DCIM, the contribution of this
component can be calculated analytically by using Sommerfeld
identity as follows:

(6)

where and is some distance.
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For the reflection terms, is not a constant, but its
asymptotic expression can be obtained by

(7)

where is a finite constant and and are the generalized
and Fresnel reflection coefficients, respectively, between layer-
and layer- .

Using (7) in (4) yields

(8)

where . This subtraction process is

valid for the symmetrical components of the DGF, but not di-
rectly applicable to the nonsymmetrical components because of
lack of closed-form expression for the subtracted part. However,
for the nonsymmetrical components, the following equation can
be used [24], [37]:

(9)

Equation (5) can then be written as

(10)

where .

As a result, for the case where the source and field points are
in the same layer (i.e., ), the subtraction procedure for
the DGF can be formulated as follows:

(11)

Fig. 2. (a) Case 1: source and field points are in the same layer. (b) Case 2:
source and field points are in adjacent layers. (c) Case 3: there is one or more
layers between source and field points.

where the subtracted integrands are

(12)

while the closed-form expressions for the subtracted terms are

(13)

In the above,

(14)

(15)

where and

(16)

(17)

The above subtraction procedure is very crucial when is
small, as the exponential term approaches one and
does not decay with when . In other words, when the
source and field points are close to each other and close to an in-
terface between two adjacent layers, the integrand decays slowly
without subtraction. This situation is shown in Fig. 2 as case 1.

To demonstrate the importance of this subtraction, a six-layer
geometry used in [6] is chosen as an example (Fig. 3). The inte-
grand is calculated for some values along the integration path
illustrated in Fig. 4 [11]. The frequency is 30 GHz, and

mm, where . Fig. 5 depicts the
magnitude of the integrand of the corresponding integral, i.e.,

, the component of the DGF for vector poten-
tial , and the spectrum of with and without subtraction. As
can be seen from this figure, after subtraction, the integrand be-
comes a rapidly decreasing function of . In fact, the decaying
is exponential, and is six orders of magnitude smaller than the
original integrand at .
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Fig. 3. Six-layer medium.

Fig. 4. Integration path in the complex k plane, k = 1:2max
fk ; k ; � � � ; k g.

Fig. 5. (a) Magnitude of the integrand ~G J (k �) sampled along the integra-
tion path for z = z = 0:3 + � =1000 mm (m = n case) for the six-layer
medium depicted in Fig. 4. (b) The magnitude of the spectrum of ~G .

The efficiency of this subtraction procedure becomes even
more obvious as the source and field points get closer to the in-
terface. Fig. 6 shows the number of segments used in the adap-
tive integration with and without subtraction for the same ge-
ometry with different values. Clearly, after the subtraction,
the integrand decays rapidly no matter how small is, and the
Green’s functions are computed accurately by using only a few
hundred integration segments or less.

To summarize the procedure for the case, the primary
field term’s contributions are calculated via the closed-form ex-
pressions for a homogeneous medium (also obtainable by using
Sommerfeld identity) and, for each reflection term, the above
subtraction procedure must be performed individually. Once the
subtraction has been done, the integration of the remaining inte-
grand can be calculated adaptively. In other words, the integral
can be calculated segment by segment on the Sommerfeld inte-
gration path (SIP) until the desired accuracy is obtained.

Fig. 6. Effect of subtraction on the convergence: the number of the segments
used in adaptive integration with and without subtraction, m = n case.

B. Source and Field Points in Different Layers

The above subtraction procedure is very efficient, but is
restricted to the case. When source and field points
are close to each other, but belonging to two different adjacent
layers, shown in Case 2 in Fig. 2, some of the exponential
terms’ magnitudes are close to one, making the integrand an
extremely slowly decaying function of . Due to the different

dependence, the Sommerfeld identity does not apply here.
However, singularity subtraction is still possible by using the
only common parameter: . It is known that [29], [37]

(18)

Similar to the subtraction procedure described for nonsymmet-
rical components, using (7) and (18) in (4) yields

(19)

Since (9) and (18) have dependence only, (10) and (19) are
valid for any source–field layer combination. Note that for the

case, there are five terms associated with TLGF and this
number becomes ten when . The subtraction pro-
cedure must be performed appropriately for all those ten terms.
For the case, the subtracted integrands in (11) can
be written as

(20)
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Fig. 7. (a) Magnitude of the integrand ~G J (k �) sampled along the
integration path for z = (0:3 � � =1000) mm, z = (0:3 + � =1000)
(m = n � 1 case) for the six-layer medium depicted in Fig. 4. (b) The
magnitude of the spectrum of ~G .

The closed-form expressions for the subtracted integrals are

(21)

In the above,

(22)

(23)

where and

(24)

and is the Fresnel reflection coefficient and is indepen-
dent of .

This described procedure is as successful as the
case. Fig. 7 depicts the magnitude of the integrand
and the spectrum of with and without subtraction when

mm and mm where mm
is the layer interface and . Again, after subtrac-
tion, the integrand becomes a rapidly decreasing function of .

Fig. 8. Effect of subtraction on the convergence: the number of segments used
in adaptive integration with and without subtraction, m = n� 1 case.

Similar to the experiment done for the case (Fig. 6), the
efficiency of this subtraction procedure becomes even more sig-
nificant as the source and field points get closer to the interface.
Fig. 8 shows the number of the segments used in the adaptive
integration with and without subtraction for the same geometry
with different values for , mm and

mm where mm is an interface of two
adjacent layers shown in Fig. 4. Again, after the subtraction, the
integrand decays rapidly (in fact, exponential) no matter how
small is.

In the above, the formulation is presented for the and
cases. The formulation for the case

is very similar to the case. This procedure can be
extended to the case easily by using asymptotic
relations given by (7) with the help of the semi-infinite integral
(9) and (18). For example, for the case, the terms to be
subtracted can be formulated as

(25)

where

(26)

(27)

(28)

(29)

is either or given by (14) depending on the order
of the Bessel function and

(30)

(31)
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Fig. 9. Magnitude of the integrand ~G J (k �) sampled along the integration
path for z = 0:9 mm, z = 0:2 (m = n + 2 case) for the six-layer medium
depicted in Fig. 4.

Fig. 10. Magnitude of the integrand ~G J (k �) sampled along the
integration path for the seven-layer medium.

(32)

The number of the terms needs to be subtracted is ten for the
case. The effect of the subtraction may not be

obvious for the problems having many thick layers and when
the source and field points are very far away from each other.
Under such circumstances, the integrand decays rapidly by it-
self and the subtraction procedure does not further improve the
convergence; however, it does not degrade the convergence ei-
ther since the subtracted terms also decay exponentially. For ex-
ample, Fig. 9 shows the integrand with and without
subtraction for , mm and mm

for the six-layer medium. Obviously, the subtrac-
tion procedure does not affect the decaying speed in a negative
way. Usually, if , the total thickness of the layers between the
source and field points exceeds 10% of the local wavelength,
such singularity subtraction does not have to be utilized. For a
case where and , the extraction of
the images becomes more effective as the ratio gets
closer to one and becomes less significant as the ratio gets closer
to zero. Moreover, for problems with thin layers shown as Case
3 in Fig. 2, for very large values of , the integral converges
very slowly without singularity subtraction. As an example of
the case , we study a seven-layer medium obtained
by adding a very thin layer (thickness , )
between mm and mm on the six-layer

Fig. 11. Magnitudes of G and G compared with [26] for the six-layer
medium with z = z = 0:4 mm.

medium in the previous example. Fig. 10 shows the integrand
with and without subtraction when ,

mm and mm
for this seven-layer medium. Clearly, after subtraction, the in-
tegrand decays much more rapidly, indicating that the method
is also useful for if the ratio is closer
to one and the thickness between layers of and is thin with
respect to the wavelength.

The above singularity subtraction is presented for .
However, this method is valid for all types of Green’s functions
such as , , traditional or alternative form , and
two- dimensional (2-D) Green’s functions [36]. The asymptotic
formulas required for these Green’s functions are (9) and (18)
and the following formulas and their derivatives:

(33)

(34)

(35)

(36)

IV. NUMERICAL RESULTS

The described technique has been implemented for several
types of 2-D and three-dimensional (3-D) spatial-domain
Green’s functions. Since 2-D results have been presented in
[36], only 3-D examples are presented here. The first two exam-
ples are chosen to demonstrate the accuracy of the method. The
first example (Fig. 11) shows the magnitude of the traditional
form of Green’s functions associated with the magnetic vector
potential. The geometry is the six-layer medium shown in
Fig. 4. The frequency is 30 GHz and mm. Fig. 12
is obtained by using the same geometry parameters, except that

mm.
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Fig. 12. Magnitudes of G and G compared with [26] for the six-layer
medium with z = 0:4 mm, z = 1:4 mm.

Fig. 13. Four-layer medium.

Fig. 14. Magnitudes of G and G compared with [11] for the four-layer
medium with z = 750 nm, z = [�1000; 1000] nm.

For the four-layer medium shown in Fig. 13, Fig. 14 shows
the magnitude of the different type of Green’s functions .
The wavelength in the free space is 633 nm and the source is
located at nm. The field points are chosen from

nm to nm.
In all these figures, the results are calculated using the de-

scribed procedure and compared with those obtained by direct
numerical integration along the SIP. In all cases, excellent agree-
ment has been verified.

Another issue is the efficiency. To demonstrate the efficiency
of the method, a five-layer geometry is chosen as Fig. 15. The

Fig. 15. Five-layer medium.

TABLE I
EXPERIMENT RESULTS

Green’s function is calculated with and without subtraction
for different , , and values. Both programs were compiled
with a Fortran77 UNIX compiler on a Dell Optiplex GX260
desktop with an Intel P4 2.4-GHz processor and 1024-MB
RAM. The last two columns of Table I show the CPU times
with and without subtraction for the same accuracy level
(10 ). With the classical numerical integration, depending
on , , and , the execution time changes dramatically. For
large values, it may take more than 2 min just for one sample,
whereas it takes less than 1 s with this described method even
for .

The efficient computation of the DGFs for layered media is an
important part of fast forward and inverse scattering problems
for 3-D targets buried in such environments (see, e.g., [38] and
[39]).

V. CONCLUSION

In this paper, a numerically efficient way of evaluating the
multilayer medium Green’s functions has been presented.
The singularity terms that cause slow convergence have been
subtracted analytically. No matter how close the source and
field points are to an interface or no matter how large is,
the described subtraction procedure makes the integrand a
rapidly decreasing function of . Since the remaining integral
is calculated numerically as accurately as desired, the com-
plete procedure is error controllable and a robust method. The
accuracy and efficiency of the method have been verified via
representative numerical examples.

APPENDIX

The spectral-domain Green’s functions for vector potential
can be formulated as follows [33]:

(37)

(38)

(39)
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(40)

where is the -type (TE or TM) TLGF relating
(voltage or current) at in layer due to an -type (voltage
or current) unit source at in layer . The formulas of the
TLGFs depending on location of the source and field points can
be given as follows.

A.

When source and field points belong to the same layer,

(41)

(42)

(43)

(44)

where is either TE or TM, and the sign of the primary field
term is positive when , otherwise it is negative. In the
above,

(45)

(46)

(47)

where is the -type generalized reflection coefficients
which can be calculated recursively by using [35]

(48)

is the width of the th layer. denotes the -type Fresnel
reflection coefficient given by

(49)

Fig. 16. Physical demonstration of primary and quasi-static field terms.

(50)

Fig. 16 shows where these primary field and reflection terms
come from.

B.

When source and field points are in different layers, the
spectral-domain Green’s function can be computed by using
voltage/current transfer functions as follows:

(51)

where denotes the -type (either voltage or current)
transfer function between a point in layer and the lower
boundary of that layer , and denotes the voltage
transfer function between and the upper boundary of the

th layer . Multiplication of these two terms with
gives

(52)

(53)

Note that when .

C.

Similarly, for case,

(54)
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(55)

(56)

Note that when .
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ŞIMŞEK et al.: SINGULARITY SUBTRACTION FOR EVALUATION OF GREEN’S FUNCTIONS FOR MULTILAYER MEDIA 225
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