
Apache	Pig	

CMSC	491	
Hadoop-Based	Distributed	Compu=ng	

Spring	2016	
Adam	Shook	

	

Objec=ves	

•  Develop	understanding	of	Pig’s	data	model	
•  Understand	basics	of	PigLa=n	

What	Is	Pig?	

•  Developed	by	Yahoo!	and	a	top	level	Apache	project	
•  Immediately	makes	data	on	a	cluster	available	to	non-
Java	programmers	via	Pig	La=n	–	a	dataflow	language	

•  Interprets	Pig	La=n	and	generates	MapReduce	jobs	
that	run	on	the	cluster	

•  Enables	easy	data	summariza=on,	ad-hoc	repor=ng	
and	querying,	and	analysis	of	large	volumes	of	data	

•  Pig	interpreter	runs	on	a	client	machine	–	no	
administra=ve	overhead	required	

Pig	Terms	

•  All	data	in	Pig	one	of	four	types:	
– An	Atom	is	a	simple	data	value	-	stored	as	a	string	but	
can	be	used	as	either	a	string	or	a	number	

– A	Tuple	is	a	data	record	consis=ng	of	a	sequence	of	
"fields"		

•  Each	field	is	a	piece	of	data	of	any	type	(atom,	tuple	or	bag)	
– A	Bag	is	a	set	of	tuples	(also	referred	to	as	a	‘Rela=on’)	

•  The	concept	of	a	table	
– A	Map	is	a	map	from	keys	that	are	string	literals	to	
values	that	can	be	any	data	type	

•  The	concept	of	a	hash	map	

Pig	Capabili=es	

•  Support	for	
– Grouping	
–  Joins	
– Filtering	
– Aggrega=on	

•  Extensibility	
– Support	for	User	Defined	Func=ons	(UDF’s)	

•  Leverages	the	same	massive	parallelism	as	
na=ve	MapReduce	

Pig	Basics	

•  Pig	is	a	client	applica=on		
– No	cluster	soeware	is	required	

•  Interprets	Pig	La=n	scripts	to	MapReduce	jobs	
– Parses	Pig	La=n	scripts	
– Performs	op=miza=on	
– Creates	execu=on	plan	

•  Submits	MapReduce	jobs	to	the	cluster	

Execu=on	Modes	
•  Pig	has	two	execu=on	modes	

–  Local	Mode	-	all	files	are	installed	and	run	using	your	local	host	
and	file	system	

–  MapReduce	Mode	-	all	files	are	installed	and	run	on	a	Hadoop	
cluster	and	HDFS	installa=on	

•  Interac=ve	
–  By	using	the	Grunt	shell	by	invoking	Pig	on	the	command	line	

$ pig
grunt>

•  Batch	
–  Run	Pig	in	batch	mode	using	Pig	Scripts	and	the	"pig"	command	

$ pig –f id.pig –p <param>=<value> ...

Pig	La=n	

•  Pig	La=n	scripts	are	generally	organized	as	follows	
–  A	LOAD	statement	reads	data	
–  A	series	of	“transforma=on”	statements	process	the	data	
–  A	STORE	statement	writes	the	output	to	the	filesystem	

•  A	DUMP	statement	displays	output	on	the	screen	

•  Logical	vs.	physical	plans:	
–  All	statements	are	stored	and	validated	as	a	logical	plan	
–  Once	a	STORE	or	DUMP	statement	is	found	the	logical	plan	
is	executed	

Example	Pig	Script	
-- Load the content of a file into a pig bag named ‘input_lines’
input_lines = LOAD 'CHANGES.txt' AS (line:chararray);

-- Extract words from each line and put them into a pig bag named ‘words’
words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;

-- filter out any words that are just white spaces
filtered_words = FILTER words BY word MATCHES '\\w+';

-- create a group for each word
word_groups = GROUP filtered_words BY word;

-- count the entries in each group

word_count = FOREACH word_groups GENERATE COUNT(filtered_words) AS count, group AS word;

-- order the records by count

ordered_word_count = ORDER word_count BY count DESC;

-- Store the results (executes the pig script)
STORE ordered_word_count INTO 'output';

Basic	“grunt”	Shell	Commands	

•  Help	is	available	
$ pig -h

•  Pig	supports	HDFS	commands	
grunt> pwd

– put,	get,	cp,	ls,	mkdir,	rm,	mv,	etc.	
	

	
	

About	Pig	Scripts	

•  Pig	La=n	statements	grouped	together	in	a	file	
•  Can	be	run	from	the	command	line	or	the	
shell	

•  Support	parameter	passing	
•  Comments	are	supported	

–  Inline	comments	'--'	
– Block	comments	/*	*/	

Simple	Data	Types	
Type	 Descrip+on	

int	 4-byte	integer	

long	 8-byte	integer	

float	 4-byte	(single	precision)	floa=ng	point	

double	 8-byte	(double	precision)	floa=ng	point	

bytearray	 Array	of	bytes;	blob	

chararray	 String	(“hello	world”)	

boolean	 True/False	(case	insensi=ve)	

date=me	 A	date	and	=me	

biginteger	 Java	BigInteger	

bigdecimal	 Java	BigDecimal	

Complex	Data	Types	

Type	 Descrip+on	

Tuple	 Ordered	set	of	fields	(a	“row	/	record”)	

Bag	 Collec=on	of	tuples	(a	“resultset	/	table”)	

Map	 A	set	of	key-value	pairs		
Keys	must	be	of	type	chararray	

Pig	Data	Formats	
•  BinStorage	

–  Loads	and	stores	data	in	machine-readable	(binary)	format	
•  PigStorage	

–  Loads	and	stores	data	as	structured,	field	delimited	text	
files	

•  TextLoader	
–  Loads	unstructured	data	in	UTF-8	format	

•  PigDump	
–  Stores	data	in	UTF-8	format	

•  YourOwnFormat!	
–  via	UDFs	

Loading Data Into Pig
•  Loads	data	from	an	HDFS	file	

var	=	LOAD	'employees.txt';	
var	=	LOAD	'employees.txt'	AS	(id,	name,	
salary);	

var	=	LOAD	'employees.txt'	using	PigStorage()	
AS	(id,	name,	salary);	

•  Each	LOAD	statement	defines	a	new	bag	
–  Each	bag	can	have	mul=ple	elements	(atoms)	
–  Each	element	can	be	referenced	by	name	or	posi=on	($n)	

•  A	bag	is	immutable	
•  A	bag	can	be	aliased	and	referenced	later	
	

	
	

	

Input	And	Output	

•  STORE	
– Writes	output	to	an	HDFS	file	in	a	specified	directory	
grunt> STORE processed INTO 'processed_txt';

•  Fails	if	directory	exists	
•  Writes	output	files,	part-[m|r]-xxxxx,	to	the	directory	

–  PigStorage	can	be	used	to	specify	a	field	delimiter	

•  DUMP	
– Write	output	to	screen	
grunt> DUMP processed;

Rela=onal	Operators	
•  FOREACH	

– Applies	expressions	to	every	record	in	a	bag	
•  FILTER	

–  Filters	by	expression	
•  GROUP	

–  Collect	records	with	the	same	key	
•  ORDER	BY	

–  Sor=ng	
•  DISTINCT	

–  Removes	duplicates	

FOREACH	.	.	.GENERATE	

•  Use	the	FOREACH	…GENERATE	operator	to	work	
with	rows	of	data,	call	func=ons,	etc.	

•  Basic	syntax:	
alias2 = FOREACH alias1 GENERATE expression;

•  Example:	
DUMP alias1;
(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)

alias2 = FOREACH alias1 GENERATE col1, col2;

DUMP alias2;

(1,2) (4,2) (8,3) (4,3) (7,2) (8,4)

	

FILTER.	.	.BY	

•  Use	the	FILTER	operator	to	restrict	tuples	or	rows	
of	data	

•  Basic	syntax:	
alias2 = FILTER alias1 BY expression;

•  Example:	
DUMP alias1;
(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
alias2 = FILTER alias1 BY (col1 == 8) OR (NOT

(col2+col3 > col1));
DUMP alias2;
(4,2,1) (8,3,4) (7,2,5) (8,4,3)

GROUP.	.	.ALL	
•  Use	the	GROUP…ALL	operator	to	group	data	

–  Use	GROUP	when	only	one	rela=on	is	involved	
–  Use	COGROUP	with	mul=ple	rela=ons	are	involved	

•  Basic	syntax:	
alias2 = GROUP alias1 ALL;

•  Example:	
DUMP alias1;
(John,18,4.0F) (Mary,19,3.8F) (Bill,20,3.9F) (Joe,

18,3.8F)
alias2 = GROUP alias1 BY col2;
DUMP alias2;
(18,{(John,18,4.0F),(Joe,18,3.8F)})
(19,{(Mary,19,3.8F)})
(20,{(Bill,20,3.9F)})

ORDER.	.	.BY	

•  Use	the	ORDER…BY	operator	to	sort	a	rela=on	
based	on	one	or	more	fields	

•  Basic	syntax:	
alias = ORDER alias BY field_alias [ASC|DESC];

•  Example:	
DUMP alias1;

(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
alias2 = ORDER alias1 BY col3 DESC;

DUMP alias2;

(7,2,5) (8,3,4) (1,2,3) (4,3,3) (8,4,3) (4,2,1)

DISTINCT.	.	.	

•  Use	the	DISTINCT	operator	to	remove	
duplicate	tuples	in	a	rela=on.	

•  Basic	syntax:	
alias2 = DISTINCT alias1;

•  Example:	
DUMP alias1;

(8,3,4) (1,2,3) (4,3,3) (4,3,3) (1,2,3)

alias2= DISTINCT alias1;

DUMP alias2;
(8,3,4) (1,2,3) (4,3,3)

	

Rela=onal	Operators	
•  FLATTEN	

–  Used	to	un-nest	tuples	as	well	as	bags		
•  INNER	JOIN	

–  Used	to	perform	an	inner	join	of	two	or	more	rela=ons	based	on	
common	field	values	

•  OUTER	JOIN	
–  Used	to	perform	lee,	right	or	full	outer	joins	

•  SPLIT	
–  Used	to	par==on	the	contents	of	a	rela=on	into	two	or	more	
rela=ons	

•  SAMPLE	
–  Used	to	select	a	random	data	sample	with	the	stated	sample	
size	

INNER	JOIN.	.	.	
•  Use	the	JOIN	operator	to	perform	an	inner,	equi-
join	join	of	two	or	more	rela=ons	based	on	
common	field	values	

•  The	JOIN	operator	always	performs	an	inner	join	
•  Inner	joins	ignore	null	keys	

–  Filter	null	keys	before	the	join	
•  JOIN	and	COGROUP	operators	perform	similar	
func=ons	
–  	JOIN	creates	a	flat	set	of	output	records		
–  COGROUP	creates	a	nested	set	of	output	records	

INNER	JOIN	Example		
DUMP Alias1;

(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

DUMP Alias2;
(2,4)
(8,9)
(1,3)
(2,7)
(2,9)
(4,6)
(4,9)

Join Alias1 by Col1 to
Alias2 by Col1

Alias3 = JOIN Alias1 BY
Col1, Alias2 BY Col1;

Dump Alias3;

(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(4,2,1,4,9)
(4,3,3,4,9)
(8,3,4,8,9)
(8,4,3,8,9)

OUTER	JOIN.	.	.	
•  Use	the	OUTER	JOIN	operator	to	perform	lee,	right,	or	
full	outer	joins		
–  Pig	La=n	syntax	closely	adheres	to	the	SQL	standard	

•  The	keyword	OUTER	is	op=onal	
–  keywords	LEFT,	RIGHT	and	FULL	will	imply	lee	outer,	right	
outer	and	full	outer	joins	respec=vely	

•  Outer	joins	will	only	work	provided	the	rela=ons	which	
need	to	produce	nulls	(in	the	case	of	non-matching	
keys)	have	schemas	

•  Outer	joins	will	only	work	for	two-way	joins	
–  To	perform	a	mul=-way	outer	join	perform	mul=ple	two-
way	outer	join	statements	

OUTER	JOIN	Examples		

•  Lee	Outer	Join	
– A	=	LOAD	'a.txt'	AS	(n:chararray,	a:int);		
– B	=	LOAD	'b.txt'	AS	(n:chararray,	m:chararray);		
– C	=	JOIN	A	by	$0	LEFT	OUTER,	B	BY	$0;		

•  Full	Outer	Join	
– A	=	LOAD	'a.txt'	AS	(n:chararray,	a:int);		
– B	=	LOAD	'b.txt'	AS	(n:chararray,	m:chararray);		
– C	=	JOIN	A	BY	$0	FULL	OUTER,	B	BY	$0;	

User-Defined	Func=ons	

•  Na=vely	wriven	in	Java,	packaged	as	a	jar	file	
– Other	languages	include	Jython,	JavaScript,	Ruby,	
Groovy,	and	Python	

•  Register	the	jar	with	the	REGISTER	statement	
•  Op=onally,	alias	it	with	the	DEFINE	statement	

	
REGISTER	/src/myfunc.jar;	
A	=	LOAD	'students';	
B	=	FOREACH	A	GENERATE	myfunc.MyEvalFunc($0);	

DEFINE	

•  DEFINE	can	be	used	to	work	with	UDFs	and	also	
streaming	commands	
– Useful	when	dealing	with	complex	input/output	
formats	

/* read and write comma-delimited data */
DEFINE Y 'stream.pl' INPUT(stdin USING PigStreaming(','))
 OUTPUT(stdout USING PigStreaming(','));
A = STREAM X THROUGH Y;

/* Define UDFs to a more readable format */
DEFINE MAXNUM org.apache.pig.piggybank.evaluation.math.MAX;
A = LOAD ‘student_data’ AS (name:chararray, gpa1:float, gpa2:double);
B = FOREACH A GENERATE name, MAXNUM(gpa1, gpa2);
DUMP B;

References	

•  hvp://pig.apache.org	

