Motion and Interaction

SIGGRAPH ‘99 Course:
Fundamental Issues of Visual Perception
for Effective Image Generation

Penny Rheingans
University of Maryland Baltimore County

Overview

• Roles of Motion Processing
• Mechanism of Motion Perception
• Using Motion to Represent Information
• Interactive Control
Roles of Motion Processing

- Required for Pattern Vision
- Driving Eye Movements
- Time to Collision
- Exproproceptive Information
- Perception of Moving Objects
- Depth from Motion
- Encoding 3D Shape
- Image Segmentation

Characteristics of Motion Perception

- Fundamental, independent visual process
 - motion aftereffects
 - motion blindness
- Based primarily on brightness
- Ability to interpret structure degrades in periphery
- Spatio-temporal interactions
Motion Pathway

- Red and green cones
- Type A retinal ganglion cells
- Magnocellular layers in LGN
- Area 4B in primary visual cortex
 - direction selectivity
 - velocity selectivity
 - expansion/contraction of visual field
 - global rotation
- Middle temporal lobe

Magnocellular Division

- Discriminates objects from one another
- Characteristics (relative to parvocellular path)
 - color : insensitive to wavelength variations
 - acuity : larger RF centers
 - speed : faster and more transient response
 - contrast : more sensitive to low contrast stimuli
- Observed characteristics of motion perception
 - color-blind: impaired at equiluminance
 - quickness
 - high contrast sensitivity
 - low acuity : impaired at high spatial frequencies
Apparent Motion

• Def: perception of motion without stimulus continuity (stroboscopic and cine)

• Influences
 – spatial frequency characteristics
 – global field effects
 – number of frames
 – expectations from reality

• Limitations
 – maximum of 300 msec interstimulus interval
 – decreased size constancy (max ~8 Hz)
 – decreased sense of observer motion
Depth from Motion

• Motion depth cues
 – head motion parallax
 – kinetic depth effect
 – magnitude of motion indicates relative depth

• Applications
 – indicating relative object positions
 – compensating for lack of other depth cues

• Limits
 – relative, not absolute depth
 – perceived size, perceived depth related

Head Motion Parallax

Bruce and Green ‘90, p. 231.
Kinetic Depth Effect

- Bruce and Green ‘90, pg. 162.
3D Structure from Motion

• Relative motion conveys info about 3D shape
• Rigidity assumption
• Applications
 – understanding of irregular/unfamiliar shapes
 – disambiguation of 2D projections
• Limits
 – 2 frames (large number of structured points)
 – 2-3 points (many frames)
 – 15 arc min (maximum displacement)

Structure from Motion

• Bruce and Green ‘90, pg. 328.
Image Segmentation

• Discontinuities in optical velocity field indicate object boundaries
• Boundaries can be detected on the basis of motion alone
• Applications
 – disambiguation of complex scenes
 – grouping of similar objects
At Equiliminance

- Motion perception of gratings degrades
- Depth perception disappears
- Depth from relative motion disappears
- Shape from relative motion disappears

Interaction vs. Animation

- Exploration vs. Presentation
 - efficiency
 - flexibility
- Active vs. Passive Participation
 - immediacy
 - control
 - development
 - understanding
Interactive Control

• Scene
 – viewpoint and direction
 – object position and orientation
• Content
 – variables
 – timestep
• Representation
 – techniques
 – parameters

Experimental Findings

• Control necessary for development
 – Held and Hein ‘63
• Dynamic control improves shape identification
 – van Damme ‘94
 – Rheingans ‘92, ‘93
• Control improves assembly performance
 – Smets and Overbeeke ‘95
• Differences between types of control
 – Ware and Francke ‘96
Experimental Findings

- **Control necessary for development**
 - Held and Hein ‘63

- **Dynamic control improves shape identification**
 - van Damme ‘94
 - Rheingans ‘92, ‘93

- **Control improves assembly performance**
 - Smets and Overbeeke ‘95

- **Differences between types of control**
 - Ware and Francke ‘96
Shape Identification

- van Damme ’94, p. 18.

Effects of Control

<table>
<thead>
<tr>
<th>Change</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jerky</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Pace</td>
</tr>
<tr>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>Smooth</td>
<td>Slide Show</td>
</tr>
<tr>
<td></td>
<td>Slide Projector</td>
</tr>
<tr>
<td>Smooth</td>
<td>Constant Loop</td>
</tr>
<tr>
<td>Smooth</td>
<td>Multispeed Loop</td>
</tr>
<tr>
<td>Smooth</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>

- Rheingans ‘92, ‘93, ‘97.
Experimental Findings

• Control necessary for development
 – Held and Hein ‘63

• Dynamic control improves shape identification
 – van Damme ‘94
 – Rheingans ‘92, ‘93

• Control improves assembly performance
 – Smets and Overbeeke ‘95

• Differences between types of control
 – Ware and Francke ‘96

Assembly Performance

• Smets and Overbeeke ‘95, p. 47.
Experimental Findings

• Control necessary for development
 – Held and Hein ‘63

• Dynamic control improves shape identification
 – van Damme ‘94
 – Rheingans ‘92, ‘93

• Control improves assembly performance
 – Smets and Overbeeke ‘95

• Differences between types of control
 – Ware and Francke ‘96

Type of Control

• Ware and Francke ‘96, p. 122.
Avoid

- Moving objects without clear boundaries
- Combining movement (of object or viewpoint) and shape change
- Motion without reference cues
- Mismatched spatial and temporal frequencies
- Temporal aliasing