Color Perception and Applications

SIGGRAPH ‘99 Course:
Fundamental Issues of Visual Perception
for Effective Image Generation

Penny Rheingans
University of Maryland Baltimore County

Overview

• Characteristics of Color Perception
• Mechanisms of Color Perception
• Color Specification
• Using Color to Represent Information
Characteristics of Color Perception

- Fundamental, independent visual process
 - after-images
 - color deficient vision
- Relative, not absolute
- Interactions between color and other visual properties

Physiology: Receptors

- Rods
 - active at low light levels (scotopic vision)
 - only one wavelength sensitivity function
- Cones
 - active at normal light levels
 - three types: sensitivity functions with different peaks
Cone Sensitivity Functions

- Glassner ‘95, p. 16.

Physiology: Ganglia

- Transform incoming SML into opponent color responses
 - G - R
 - Y - B (Y = R+G)
 - W (W = R+G)

- Characteristics
 - concentric receptive fields
 - logarithmic response of receptors
 - adaption
Physiology: Brain

- **Lateral geniculate nuclei**
 - assemble data for single side of visual field
 - 2 monochromatic layers => magnocellular path
 - 4 chromatic layers => parvocellular path

- **Visual cortex**
 - visual area 1: blobs
 - visual area 2: thick stripes
 - visual area 4

Visual Pathway

- Murch, ‘87.
Parvocellular Division

• Role in vision
 – discrimination of fine detail
 – color
• Characteristics
 – color: sensitive to wavelength variations
 – acuity: small RF centers
 – speed: relatively slow response

Color Models

• Device-derived
 – convenient for describing display device levels
 – RGB, CMY
• Intuitive
 – based in familiar color description terms
 – HSV, HSB, HLS
• Perceptually uniform
 – device independent, perceptually uniform
 – CIELUV, CIELAB, Munsell
Color Models

- **Device-derived**
 - convenient for describing display device levels
 - RGB, CMY
- **Intuitive**
 - based in familiar color description terms
 - HSV, HSB, HLS
- **Perceptually uniform**
 - device independent, perceptually uniform
 - CIELUV, CIELAB, Munsell
Color Models

• Device-derived
 – convenient for describing display device levels
 – RGB, CMY
• Intuitive
 – based in familiar color description terms
 – HSV, HSB, HLS
• Perceptually uniform
 – device independent, perceptually uniform
 – CIELUV, CIELAB, Munsell
Uses of Color

- Show classification
- Mimic reality
- Show value
- Draw attention
- Show grouping
Uses of Color

- Show classification
- Mimic reality
- Show value
- Draw attention
- Show grouping
Uses of Color

- Show classification
- Mimic reality
- Show value
- Draw attention
- Show grouping
Uses of Color

- Show classification
- Mimic reality
- Show value
- **Draw attention**
- Show grouping
Uses of Color

- Show classification
- Mimic reality
- Show value
- Draw attention
- Show grouping
Perceptual Distortions

• Color-deficiency
• Interactions between color components
 – saturation - brightness (Helmholtz-Kohlraush effect)
 – brightness - hue (Bezold-Brucke Phenomenon)
• Simultaneous contrast
 – brightness
 – hue
• Small field achrominance
• Effects of color on perceived size
Bezold-Brucke Phenomenon

Perceptual Distortions

- Color-deficiency
- Interactions between color components
 - saturation - brightness (Helmholtz-Kohlraush effect)
 - brightness - hue (Bezold-Brucke Phenomenon)
- Simultaneous contrast
 - brightness
 - hue
- Small field achrominance
- Effects of color on perceived size

- Hurvich ‘81, pg. 73.
Simultaneous Contrast

Simultaneous Contrast

Perceptual Distortions

• Color-deficiency
• Interactions between color components
 – saturation - brightness (Helmholtz-Kohlraush effect)
 – brightness - hue (Bezold-Brucke Phenomenon)
• Simultaneous contrast
 – brightness
 – hue
• Small field achrominance
• Effects of color on perceived size

Small Field Achrominance

• Wandell ‘95, cp. 3.
Perceptual Distortions

- Color-deficiency
- Interactions between color components
 - saturation - brightness (Helmholtz-Kohlraush effect)
 - brightness - hue (Bezold-Brucke Phenomenon)
- Simultaneous contrast
 - brightness
 - hue
- Small field achrominance
- Effects of color on perceived size

Color-size Illusion

- Cleveland and McGill ‘83.
Some Color Scales

- Univariate
 - color model component
 - optimal scales
 - double-ended
- Multivariate
 - color model components
 - Census Bureau TVCM
 - complementary display parameters
Some Color Scales

- **Univariate**
 - color model component
 - optimal scales
 - double-ended
- **Multivariate**
 - color model components
 - Census Bureau TVCM
 - complementary display parameters
Some Color Scales

• Univariate
 – color model component
 – optimal scales
 – double-ended
• Multivariate
 – color model components
 – Census Bureau TVCM
 – complementary display parameters

• Olson ‘97, fig. 11-8.
Some Color Scales

- **Univariate**
 - color model component
 - optimal scales
 - double-ended
- **Multivariate**
 - color model components
 - Census Bureau TVCM
 - complementary display parameters
Some Color Scales

- **Univariate**
 - color model component
 - optimal scales
 - double-ended
- **Multivariate**
 - color model components
 - Census Bureau TVCM
 - complementary display parameters

Some Color Scales

• Univariate
 – color model component
 – optimal scales
 – double-ended

• Multivariate
 – color model components
 – Census Bureau TVCM
 – complementary display parameters
Evaluating Color Scales

• Trumbo’s Principles
 – *Order*: ordered values should be represented by ordered colors
 – *Separation*: significantly different levels should be represented by distinguishable colors
 – *Rows and columns*: to preserve univariate information, display parameters should not obscure one another
 – *Diagonal*: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below
Evaluating Color Scales

• Trumbo’s Principles
 – Order: ordered values should be represented by ordered colors
 – Separation: significantly different levels should be represented by distinguishable colors
 – Rows and columns: to preserve univariate information, display parameters should not obscure one another
 – Diagonal: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below
Evaluating Color Scales

- **Trumbo’s Principles**
 - *Order*: ordered values should be represented by ordered colors
 - *Separation*: significantly different levels should be represented by distinguishable colors
 - *Rows and columns*: to preserve univariate information, display parameters should not obscure one another
 - *Diagonal*: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below
• Tufte ‘83, pg. 153.
Evaluating Color Scales

• Trumbo’s Principles
 – *Order*: ordered values should be represented by ordered colors
 – *Separation*: significantly different levels should be represented by distinguishable colors
 – *Rows and columns*: to preserve univariate information, display parameters should not obscure one another
 – *Diagonal*: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below
Evaluating Color Scales (cont.)

- Ware’s experiments
 - metric (quantitative) judgements
 - surface (qualitative) judgements
 - redundant color scales
Ware’s Color Scales

- Ware ‘88.
Considerations

• Consider goals
• Consider data
• Consider audience
• Consider color connotations
Final Consideration

- Does this work?
Principles of Color Representation

- Avoid distortions
- Exploit the familiar
- Emphasize the interesting
- Say it again (redundant mappings)
- Select appropriate level of detail
Color Models: Device-derived

- Red-Green-Blue
Color Models: Intuitive

- Hue-Saturation-Value
- Hue-Lightness-Saturation

Color Models: Perceptually Uniform

- CIELUV
Opponent Channel Recoding

Long (R) → - → R - G
Medium (G) + Yellow → Achromatic
Short (B) - → Y-B