Flow Visualization

CMSC 436/636

Penny Rheingans
University of Maryland Baltimore County

Flow Vis Goals

• See movement of fluid (direction/velocity) in instant or over time
• Applications
 – aerodynamics
 – CAD
 – airflow through/around buildings
 – ocean currents
 – fluid flow through pumps/values
 – electromagnetics
Types of Flow Data

- **Basic form**
 - Vector (tensor) at every point
- **Steady state**
 - Flow field static over visualization
- **Unsteady state**
 - Flow field changes over time
- **Implications**
 - Computational complexity
 - Representational complexity

Magnitude

- Recast as scalar vis problem
 - Compute magnitude of flow vector
 \[|v| = \sqrt{x^2 + y^2 + z^2} \]
 - Display magnitude
Glyphs

- Techniques
 - arrows / hedgehog / tufts
 - arrows with range
 - tensor glyphs
Uncertainty Glyph

- Pang ‘97

Figure 7: Average velocity (arrow icon) and velocity distribution (ellipsoid icon) for regions with high reaction speed.
Glyph Issues

- Placement / density
- Interactive probing
- Analysis of topology
Color

- Color as auxilliary: usually magnitude

- Interactive color
 - Boring and Pang, Vis ‘96
 - color to show relationship between vec and light
 - interactive exploration
Colorwheel

- Color wheel
 - Johansen and Moorhead, CG&A ‘95
 - color angle shows orientation
 - optionally, magnitude as saturation and/or lightness
Traditional Approach

• Release markers (smoke, bubbles, dye) in flow
• Watch where it goes
• Many flow vis techniques mimic these techniques

Particle Advection

• Release weightless particles into flow, follow their paths
• Color by
 – release location
 – age
 – field characteristics: velocity, pressure, etc
Advection Issues

• Positional accuracy
 – Euler’s method: error \(\equiv O(dt^2) \)
 – Runge-Kutta: error \(\equiv O(dt^3) \)

• Speed vs accuracy trade-offs
 – method
 – step-size

Lines

• Generally
 – follow path of marker through flow
 – same speed/accuracy concerns as particles

• Types of line markers
 – streamline: path of single marker
 – streakline: path of stream of particles from single release point in changing flow

• Placement issues
 – show off interesting features
 – even spacing in merging/diverging fields
Streamline Placement

- Turk and Banks, SIGGRAPH ‘96
- Observation: hand-drawn streamlines place lines so that no region is empty of lines and no region is overpopulated

Short stream lines

- on regular grid
- on jittered grid
- optimized

Filtered Streamlines
Streamlines with centers placed regularly on grid

Streamlines placed by density-based optimization

Turk and Banks, SIGGRAPH ‘96
Tubes

• 3D entities for improved perception
• Tube = surface at constant distance from streamline
• Auxiliary information display
 – can color to show value
 – can vary radius to show value

Figure 6: Stream tubes through regions with high normalized helicity density.
Illuminated Lines

- Zöckler, Stalling, Hege, Vis ‘96
- Idea: use shaded streamlines to give better shape/depth cues
- Catch: no hardware for shaded lines

Illuminated Streamlines: Method

- Method
 - use texture-mapping hardware to do line shading
 - diffuse: 1D indexed by L*T (light * tangent)
 - specular: 2D indexed by light and view angle
 - load texture maps to give correct illumination for those lighting and viewing conditions
Stream Polygon

- Use polygon perpendicular to flow line
- Can be deformed by forces
Stream Surface

- **Method**
 - generate stream lines
 - join adjacent streamlines to form triangles
- **Issue**
 - diverging and merging flows

Texture Approaches

- Use texture to convey dense structure of field
 - Individual, independent elements
 - More sophisticated synthesis
SpotNoise

- Van Wijk, ‘91

Line Integral Convolution (LIC)

- Cabral and Leedom, ‘93; Forsell ‘96
Image-based Approaches

van Wijk, '02