Data, Tasks, and Clients
CMSC 436/636
Data Visualization

Penny Rheingans
University of Maryland Baltimore County

Announcements
- Project teams by Thurs
- Paper reflection due by Thurs
- Quiz schedule on website; also laptop exercise dates
- Questions?
Data Taxonomy

- Can characterize data by its characteristics
- Can generalize about data with similar characteristics
 - potential problems
 - natural visualization techniques
 - ease of implementation

Data Items

- Entities
- Attributes
- Relations
Data Characteristics: Continuity

- Continuity
 - discrete: anything sampled or stored
 - ex: computational model, CT scan
 - issues:
 - representation error
 - possible aliasing
 - artifacts of sampling
 - continuous: only implicitly defined
 - ex: mathematical functions, predictive model

Data Characteristics: Structure

- Geometry vs Topology
- Topological Structure
 - Structured
 - Inherent spatial relationship among points (gridded)
 - Common grid types
 - Regular
 - Rectilinear
 - Curvilinear
 - Advantages
 - easy computation
 - possibly efficient storage (for densely populated grids)
Data Characteristics: Structure

- **Structure**
 - Irregularly structured
 - non-grid connectivity
 - ex: FEM results, surface meshes
 - advantages:
 - flexibility
 - Completely unstructured
 - no known spatial relationship among points
 - ex: pollution monitors, documents, atoms
 - advantages:
 - flexibility
 - efficient storage (for sparsely populated grids)

Data Characteristics: Dimension

- **Dimensionality**
 - # independent variables (usually # spatial/temporal variables)
 - commonly:
 - 2D
 - ex: weather info at ground, xray
 - 3D
 - ex: weather info in atmosphere, CT/MRI scan
 - n D
 - ex: census info, stock market conditions, document word frequency
 - Grid dimensions may differ from spatial dimensions
Data Characteristics: Multiple

- Number of variables per position
 - scalar
 - one value
 - ex: temperature, rainfall, or wind speed
 - multivariate:
 - multiple scalars
 - ex: temperature, rainfall, and wind speed
 - vector
 - ex: wind direction
 - tensor
 - ex: stress and strain forces

- Multivariate vs multidimensional

Data Characteristics: Scale

- Types
 - nominal
 - categories or identifiers
 - ex: county, land use, ethnicity, tissue type
 - ordinal
 - ordered values
 - ex: preference, ranking
 - integer
 - constant step size
 - ex: test scores, degrees Fahrenheit
 - ratio
 - meaningful zero
 - ex: degrees Kelvin, income, wind speed
Criteria for Internal Representation

• Compact
 ◦ efficient memory use
 ◦ ex: unstructured schemes, sparse matrices, shared verts

• Efficient
 ◦ computationally accessible
 ◦ retrieve and store in constant time

Criteria for Internal Representation

• Mappable
 ◦ straight-forward conversions
 • native --> rep: simple conversion, no info lost
 • rep --> graphics prim: fast for interactive display

• Minimal coverage
 ◦ manageable # options
 ◦ few variants which work for wide variety of data

• Simple
 ◦ easier to use
 ◦ easier to optimize
 ◦ errors less likely
Visualization Tasks

- See values
 - extrema
 - anomalies
 - boundaries/thresholds
 - distribution / structure
- See multiple variables
 - relationships
- See flow/change
- Understand process

Data Posters Exercise

- Break into five groups, discuss a poster
 - What are data items displayed?
 - Item, type, number
 - What elements of the visual vocabulary are used to display data items?
 - What design choices have been made?
 - Location, color, glyph
 - What makes the strongest impression?
 - What information is obscured?
 - What discoveries about the data can you make from the visualization?
- Report back to class
Toolsmith Paper Highlights

- Computer scientist as toolsmith -- our success is in the success of our users
- Intelligence amplification -- a machine and a mind together can beat a mind-imitating machine
- Collaboration
 - Driving problem approach: scale, honest, whole problem, new challenges, fun
 - Costs of collaboration

Interview Types

- Informal
 - Casual conversation without obvious information seeking
- Unstructured
 - Interviewer has plan for topics, but lets interviewee lead direction
- Semistructured
 - Questions from interview guide with followup
- Structured
 - Set questions in scripted order
General Interview Guide

- What are the questions you are trying to answer with this data? What are your goals?
- Where did the data come from? What is the structure of the data?
- What do you expect to find in the data?
- What are your current methods for analyzing the data?
- What do you want to do with the data that isn’t currently possible?

Client Exercise

- Divide into groups of four
- Role play scenarios with following roles
 - Client
 - Interviewer
 - Coach
 - Evaluator
- Share observations