Relationship among Coord Systems

The matrix underneath each stage determines the transformation applied at that stage for the perspective and parallel projections.
Viewport Transformation

- Window to viewport transform
 - Have projection coordinates (canonical view volume)
 \[-1 \leq x \leq 1, -1 \leq y \leq 1, -1 \leq z \leq 1\]
 - Need device coordinates
 \[-0.5 \leq x \leq n_x, -0.5 \leq y \leq n_y, z \text{ unchanged}\]
- Steps
 Translate lower left corner to origin:
 \[T(1,1,0)\]
 Scale to correct size:
 \[S(n_x/2, n_y/2, 1)\]
 Translate into place:
 \[T(-0.5, -0.5, 0)\]

\[
M_{vp} = \begin{bmatrix}
 n_x & 0 & 0 & n_x - 1 \\
 2 & 0 & 0 & 2 \\
 n_y & 0 & 0 & n_y - 1 \\
 0 & 2 & 0 & 2 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

View Volumes

View volume bounded by front, back, top, bottom, and side planes. Front and back planes are parallel to the view plane at positions \(z_{\text{front}}\) and \(z_{\text{back}}\) along the \(z_y\) axis.
Projection

- Perspective
 - Line AB projects to A’B’ (perspective projection)

- Parallel
 - Line AB projects to A’B’ (parallel projection)
 - Projectors AA’ and BB’ are parallel

Simple Parallel Tform

View plane is normal to direction of projection
\[x_s = x_v, y_s = y_v, z_s = 0 \]

Orthographic view volume bounded by
- x: l,r = left, right
- y: b,t = bottom, top
- z: n,f = near, far

\[
T_{ort} = \begin{bmatrix}
2 & 0 & 0 & -\frac{r+l}{r-l} \\
\frac{r-l}{t-b} & 0 & 0 & -\frac{t+b}{t-b} \\
0 & \frac{2}{n-f} & 0 & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Code Fragment

construct M_{vp}
construct M_{orth}
$M = M_{vp}M_{orth}$
for each line segment (a_i, b_i) do
 $p = Ma_i$
 $q = Mb_i$
 drawline(x_p, y_p, x_q, y_q)

Simple Perspective Tform

- Assume line from center of projection to center of view plane parallel to view plane normal.
- Center of projection is at origin.
- Have $P(x_v, y_v, z_v)$
- Want $P(x_s, y_s)$
Simple Perspective Tform

- Have \(P(x_v, y_v, z_v) \)
- Want \(P(x_s, y_s) \)
- By similar triangles:

\[
\frac{x_s}{d} = \frac{x_v}{z_v}, \quad \frac{y_s}{d} = \frac{y_v}{z_v}
\]

\[\Rightarrow x_s = \frac{d}{z_v} x_v, \quad y_s = \frac{d}{z_v} y_v\]

- In homogeneous coords

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1/n & 1
\end{bmatrix}
\begin{bmatrix}
 x_v \\
 y_v \\
 z_v \\
 1
\end{bmatrix}
\]

- Do perspective divide to get screen coords

\[x_s = \frac{x}{w}, \quad y_s = \frac{y}{w}, \quad z_s = \frac{z}{w} = n\]
World and View Spaces

- World space
 - Used for modeling
 - Right-handed
- View space (simple)
 - Camera/viewer at origin
 - View along \(z_v \) axis
 - \(x_v \) and \(y_v \) aligned with display system

\[
V = T_{\text{view}} \cdot W \Rightarrow \begin{bmatrix} x_v \\ y_v \\ z_v \\ 1 \end{bmatrix} = T_{\text{view}} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}
\]

Camera Transform

- Transforms world to view coords:
 - Aligning a viewing system with the world coordinate axes using a sequence of translate-rotate tforms.
 - Translate view point to origin of world coordinate space.
 - Rotate to align view coordinate axes \((x_v, y_v, z_v)\) with world coordinate axes \((x_w, y_w, z_w)\)
Basic Viewing System

- Viewing system using
 - camera position C (or e)
 - viewing vector N (or $-g$)
 - up vector V (or t)
 - view plane distance d (or n)

- The world coordinate system is right-handed, the view coordinate system is left-handed.

Characteristics
- View direction controllable
- Camera up controllable
- No view volume specified
- No view plane window specified
- Perspective projection with viewport as center of projection

Implementing Basic Viewing

- Translation as before:
 $T(-c_x, -c_y, -c_z)$

- Rotate to align axes:

$$ R = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $$

- Convert to left-handed coordinates:
 $S(1, 1, -1)$
View Transformation

1. Translate origin of world coordinate system to origin of view coordinate system (transformation of coordinate system is inverse of that which moves points)

\[
T_1 = \begin{bmatrix}
1 & 0 & 0 & -c_x \\
0 & 1 & 0 & -c_y \\
0 & 0 & 1 & -c_z \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

View Transformation

2. Rotate coordinate system 90° about x' axis. Use \(\theta = -90 \).

\[
T_2 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
View Transformation

3. Rotate about \(y' \) by \(\theta \) so that \((0,0,c_z)\) lies on \(z' \) axis.

\[
T_3 = \begin{bmatrix}
\cos(-\theta) & 0 & \sin(-\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin(-\theta) & 0 & \cos(-\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
\cos \theta & 0 & -\sin \theta & 0 \\
0 & 1 & 0 & 0 \\
\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

View Transformation

4. Rotate about \(x' \) by \(\phi \) so that the origin of the original coordinate system lies on \(z' \) axis.

\[
T_4 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(-\phi) & -\sin(-\phi) & 0 \\
0 & \sin(-\phi) & \cos(-\phi) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \phi & \sin \phi & 0 \\
0 & -\sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
View Transformation

5. Reflect z' axis to create left-handed coordinate system.

\[
T_5 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

View Transformation

6. Twist about z' so that y' aligns with V.

\[
T_6 = \begin{bmatrix}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Viewing Example

Camera at (6,8,7.5)
View towards (0,0,0)
VPN (-6,-8, -7.5)
View up (-3.6, -4.8, 8.8)

1. Translate world origin to view origin

\[
T_1 = \begin{bmatrix}
1 & 0 & 0 & -6 \\
0 & 1 & 0 & -8 \\
0 & 0 & 1 & -7.5 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

2. Rotate 90° about x’.

\[
T_2 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
3. Rotate about y' by θ so that $(0,0,c_z)$ lies on the z' axis.
$\cos \theta = -8/10$
$\sin \theta = -6/10$
$$
T_3 = \begin{bmatrix}
-0.8 & 0 & -0.6 & 0 \\
0 & 1 & 0 & 0 \\
0.6 & 0 & -0.8 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
$$

4. Rotate about x' by ϕ so that the origin of the original coordinate system lies on the z' axis.
$\cos \phi = 10/12.5$
$\sin \phi = 7.5/12.5$
$$
T_4 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -0.8 & 0 & -0.6 \\
0 & 0.6 & -0.8 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
$$
5. Reflect z' axis to create left-handed coordinate system.

\[
T_5 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

6. Twist about z' axis so that y' aligns with V.

\[
\alpha = \cos^{-1} \left(\frac{V \cdot y_e}{|V| |y_e|} \right)
\]

where $y_e = y_i T_w$ = $T_3 T_2 T_1 y_i$

V = (-3.6, -4.8, 8)

y_e = (-3.6, -4.8, 8)

α = 0

\[
T_6 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Viewing Example

- Multiply it all together
- Cube at origin

\[
V = T_6T_5T_4T_3T_2T_1 = \begin{bmatrix}
-0.8 & 0.6 & 0 & 0 \\
-0.36 & -0.48 & 0.8 & 0 \\
-0.48 & -0.64 & -0.6 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Compositions of Translations and Rotations

- Resulting matrix has form

\[
M = \begin{bmatrix}
 r_{11} & r_{12} & r_{13} & r_x \\
 r_{21} & r_{22} & r_{23} & r_y \\
 r_{31} & r_{32} & r_{33} & r_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Basis Rotation Shortcut

- Where \(u'_x, u'_y, u'_z \) are unit basis vectors
- Assume we’ve already performed translation, so \(x'_0 = y'_0 = z'_0 = 0 \)
- Can rotate to align basis vectors using

\[
R = \begin{bmatrix}
 u'_{x1} & u'_{x2} & u'_{x3} & 0 \\
 u'_{y1} & u'_{y2} & u'_{y3} & 0 \\
 u'_{z1} & u'_{z2} & u'_{z3} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

where \(u'_x = \begin{bmatrix} u'_{x1} \\ u'_{x2} \\ u'_{x3} \end{bmatrix} \)

\(u'_y = \begin{bmatrix} u'_{y1} \\ u'_{y2} \\ u'_{y3} \end{bmatrix} \)

\(u'_z = \begin{bmatrix} u'_{z1} \\ u'_{z2} \\ u'_{z3} \end{bmatrix} \)

- Expressed in coordinates of \(S \)

Applying the Shortcut

- Given view direction vector \(N \)

\[
n = \frac{N}{\|N\|} = (n_1, n_2, n_3)
\]

- Given view up vector \(V \)

\[
u = \frac{N \times V}{\|N \times V\|} = (u_1, u_2, u_3)
\]

\[
v = u \times n = (v_1, v_2, v_3)
\]

\[
R = \begin{bmatrix}
 u_1 & u_2 & u_3 & 0 \\
 v_1 & v_2 & v_3 & 0 \\
 n_1 & n_2 & n_3 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Shortcut Example

Camera at (6,8,7.5)
View towards (0,0,0)
VPN (-6,-8,-7.5)
View up (-3.6,-4.8,8.8)

\[
\mathbf{n} = \frac{\mathbf{N}}{||\mathbf{N}||} = (n_1,n_2,n_3) = (-6/12.5,-8/12.5,-7/12.5) = (-.48,-.64,-.6)
\]

\[
\mathbf{u} = \frac{\mathbf{N} \times \mathbf{V}}{||\mathbf{N} \times \mathbf{V}||} = \frac{(-8 \cdot 8 - 7.5 \cdot -4.8 - 7.5 \cdot -3.6 - 6 \cdot 8 - 6 \cdot -8 - 6 \cdot -3.6)}{||\mathbf{N} \times \mathbf{V}||} = \frac{(-100,75,0)}{||\mathbf{N} \times \mathbf{V}||} = (-.8,.6,.8)
\]

\[
\mathbf{v} = \mathbf{u} \times \mathbf{n} = (v_1,v_2,v_3) = (-.36,-.48,.8)
\]

\[
R = \begin{bmatrix}
-0.8 & 0.6 & 0 & 0 \\
-0.36 & -0.48 & 0.8 & 0 \\
-0.48 & -0.64 & -0.6 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Advanced Viewing System

- Frustum from six planes
- Left-handed system
- Using
 - Camera position (C)
 - View direction (N, -Zv)
 - View up (Yv)
 - Distance to near (n) and far (f) plane
- Characteristics
 - View position and direction controllable
 - Camera up controllable
 - View volume specified, but view plane constrained to be coincident with near plane
 - Perspective with center of projection at view point
Advanced Viewing System

View volume specified by
\[x = \frac{[r,l]z_v}{n} \text{ (sides)} \]
\[y = \frac{[t,b]z_v}{n} \text{ (top/bottom)} \]
\[z_v = n,f \text{ (near/far)} \]

View plane has dimensions \((r-l):(t-b)\)

- Want 3D screen space for
 - 3D clipping
 - Visibility calculation
- Choose \(z_s\) such that
 - \(Z_s\) normalized for maximum precision
 - \(x,y\) positions unchanged on near plane

Projection for Advanced View

- Full perspective transform
 - \(x = \frac{2n}{r-l}x_v + \frac{(l+r)}{(l-r)}z_v\)
 - \(y = \frac{2n}{t-b}y_v + \frac{(t+b)}{(b-t)}z_v\)
 - \(z = \frac{(f+n)}{(n-f)}z_v + \frac{2fn}{f-n}\)
- Using homogeneous coordinates
 - \(x = \frac{2n}{r-l}x_v + \frac{(1+r)}{(l-r)}z_v\)
 - \(y = \frac{2n}{t-b}y_v + \frac{(1+b)}{(b-t)}z_v\)
 - \(z = \frac{(1+n)}{(n-f)} + \frac{2fn}{f-n}/z_v\)
 - \(w = z_v\)
- So

\[
\begin{bmatrix}
 x_v \\
 y_v \\
 z_v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\
 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0 \\
 0 & 0 & \frac{f+n}{f-n} & \frac{2fn}{f-n} \\
 0 & 0 & \frac{n-f}{n-f} & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]