Basic Trigonometry

• Angles
 - degrees = $180/\pi$ radians

• Some functions
 - $\sin \theta = o/h$
 - $\cos \theta = a/h$
 - $\tan \theta = o/a$

• A few identities
 - $\sin(-A) = -\sin A$
 - $\cos(-A) = \cos A$
 - $\sin^2 A + \cos^2 A = 1$
Vectors

- Vector: length and direction gives offset

\[\mathbf{a} = \begin{bmatrix} x_a \\ y_a \\ z_a \end{bmatrix} \quad \mathbf{a}^T = \begin{bmatrix} x_a & y_a & z_a \end{bmatrix} \]

Vectors (2)

- Operations
 - Length
 \[\| \mathbf{a} \| = \sqrt{x_a^2 + y_a^2 + z_a^2} \]
 - Addition
 \[\mathbf{a} + \mathbf{b} = \begin{bmatrix} x_a + x_b \\ y_a + y_b \\ z_a + z_b \end{bmatrix} \]
 - Subtraction
 \[\mathbf{a} - \mathbf{b} = \begin{bmatrix} x_a - x_b \\ y_a - y_b \\ z_a - z_b \end{bmatrix} \]
Vectors (3)

- Dot Product
 \[\mathbf{a} \cdot \mathbf{b} = x_a x_b + y_a y_b + z_a z_b \]
 - angle between
 \[\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta \]
 - projection of one on other

\[\mathbf{a} \rightarrow \mathbf{b} = \|\mathbf{a}\| \cos \theta \]

Vectors (4)

- Cross Product
 \[\mathbf{a} \times \mathbf{b} = (y_a z_b - z_a y_b, z_a x_b - x_a z_b, x_a y_b - y_a x_b) \]

- \(\mathbf{c} = \mathbf{a} \times \mathbf{b} \)
 - orthogonal to \(\mathbf{a}, \mathbf{b} \)
 - length=pgrom area
- \(\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b} \)
Vectors (5)

- Coordinate Frames (uvw coord system)
 - Orthonormal basis
 - Unit length \(\|u\| = \|v\| = \|w\| = 1 \)
 - Orthogonal \(u \cdot v = v \cdot w = w \cdot u = 0 \)
 - Right-handed vs left-handed
 - Right-handed \(W = u \times V \)

- Coordinate frames
 - Global (world) coordinate system
 - Local (object) coordinate system

Orthonormal Basis

- Constructing from a vector \(a \)
 - Unit vector in direction of \(a \): \(w = \frac{a}{\|a\|} \)
 - Any perpendicular to \(w \) (using noncollinear \(t \)): \(u = \frac{t \times w}{\|t \times w\|} \)
 - Unit vector perpendicular to both: \(v = w \times u \)

- Constructing from two vectors \(a, b \)
 - Unit vector in direction of \(a \): \(w = \frac{a}{\|a\|} \)
 - Perpendicular to \(w \) and \(b \): \(u = \frac{b \times w}{\|b \times w\|} \)
 - Unit vector perpendicular to both: \(v = w \times u \)
Linear Interpolation

- Formula
 \[n = n_1 + t(n_2 - n_1) \]
 where \(n = n_1 \) at \(t=0 \), \(n = n_2 \) at \(t=1 \)

- Uses
 - Points along a line (repeat for \(x,y,z \))
 - Colors between sample points (repeat for \(r,g,b \))

Implicit Lines

- Function defines relationship among coords
- 2D Formula
 \[y - mx - b = 0 \]
 - where \(y \) is slope and \(b \) is intercept
- General form
 \[Ax + By + C = 0 \]
 - Orthogonal to \([A \ B] \)
 - Computing from points
 \[(y_0 - y_1)x + (x_0 - x_1)y + x_0y_1 - x_1y_0 = 0 \]
 - Substitute in point for signed distance
Implicit Primitives

- Function defines relationship among coords
- Implicit Plane
 \[(p - a) \cdot n = 0\]
 - Orthogonal to \(n\), through \(a\)
 - Computing from points \(a, b, c\)
 \[(p - a) \cdot ((b - a) \times (c - a)) = 0\]
- Implicit Sphere
 \[(p - c)^2 - r^2 = 0\]
 - Radius \(r\), center point \(c\)

Parametric Lines

- Define line by end points
- Formula
 \[p = p_1 + t(p_2 - p_1)\]
 where \(p = p_1\) at \(t=0\), \(p = p_2\) at \(t=1\)
- Components
 \[x = x_1 + t(x_2 - x_1)\]
 \[y = y_1 + t(y_2 - y_1)\]
 \[z = z_1 + t(z_2 - z_1)\]
Triangles

- Specified by triplet of vertex positions
 - a,b,c
 - Counter-clockwise order

- Finding triangle normal
 \[n = (b - a) \times (c - a) \]

Barycentric Coordinates

- Use non-orthogonal coordinates to describe position relative to vertices
 \[p = a + \beta(b - a) + \gamma(c - a) \]
 \[p(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \]
 - Coordinates correspond to scaled signed distance from lines through pairs of vertices
Barycentric Example

Barycentric Coordinates

- Computing coordinates

\[\gamma = \frac{(y_a - y_b)x + (x_b - x_a)y + x_ay_b - x_by_a}{(y_a - y_b)x_c + (x_b - x_a)y_c + x_ay_b - x_by_a} \]

\[\beta = \frac{(y_a - y_c)x + (x_c - x_a)y + x_ay_c - x_cy_a}{(y_a - y_c)x_b + (x_c - x_a)y_b + x_ay_c - x_cy_a} \]

\[\alpha = 1 - \beta - \gamma \]
Matrix Multiplication

• With matrices A, B

\[
A = \begin{bmatrix}
a_{00} & a_{10} & a_{20} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22} \\
\end{bmatrix} \quad B = \begin{bmatrix}
b_{00} & b_{10} & b_{20} \\
b_{10} & b_{11} & b_{12} \\
b_{20} & b_{21} & b_{22} \\
\end{bmatrix}
\]

• To compute C=AB

\[
c_{ij} = a_{i0}b_{0j} + a_{i1}b_{1j} + a_{i2}b_{2j}
\]