Graphics and Games

IS 101Y/CMSC 104Y
First Year IT

Penny Rheingans
University of Maryland Baltimore County

• Announcements
• Quizzes
• Project Questions
• Other questions
Questions about Reading Asst

Games with a Purpose
Human Crowd Computation Game

- Form into groups of 3
 - One is Picture; two are taggers
- Picture shows an image
- Taggers list words (30 seconds)
 - Words common between lists are added to db of tags

Games

- What things are important for developing compelling/successful computer games?

- What background/skills would someone need to work in the field?
Computer Graphics

• Using computer to generate simulated scenes or worlds
• Can require tricking eye to believe 2D collection of pixels is really a continuous 3D world
• Coding-intensive application with strong basis in creativity and human perception

• Five key problems
 – What shape is it?
 – What do you see?
 – What does it look like?
 – How does it move?
 – Why does it have to look like a photograph?

What shape is it?
Modeling Approaches

• **Modeling problem**
 – Define shape, color, and other visual properties

• **Modeling solutions**
 – Manual primitive creation
 – Scans from physical object
 – Functional descriptions
 – Grammar-based generation
 – Biologically-inspired simulations

Scanning

![Scanning Image 1](image1.png)
![Scanning Image 2](image2.png)
Functional Descriptions

- Define visual attributes with function, defined over space
 - Shape
 - Density
 - Color

Grammar-based Generation

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
- A CFG $G=(V,T,S,P)$ with
 - V is a set of non-terminals
 - T is a set of terminals
 - S is the start symbol
 - P is a set of productions (rules) of the form:
 - $A \rightarrow x$, where $A \in V$, $x \in (V \cup T)^*$
Biological Simulations

Mimic developmental process:
- cellular automata
- reaction diffusion

What do you see?
Painter’s Algorithm

- Basic approach
 - Draw polygons, from farthest to closest

- Given
 - List of polygons \{P_1, P_2, ..., P_n\}
 - An array of Intensity \([x,y]\)

- Begin
 - Sort polygon list on minimum Z
 (largest z value comes first in sorted list)
 - For each polygon \(P\) in selected list do
 - For each pixel \((x,y)\) that intersects \(P\) do
 - Intensity\([x,y]\) = intensity of \(P\) at \((x,y)\)
 - Display Intensity array

Z-Buffer

- Basic approach
 - Draw polygons, remembering depth of stuff drawn so far

- Given
 - List of polygons \{P_1, P_2, ..., P_n\}
 - An array x-buffer\([x,y]\) initialized to +infinity
 - An array Intensity\([x,y]\)

- Begin
 - For each polygon \(P\) in selected list do
 - For each pixel \((x,y)\) that intersects \(P\) do
 - Calculate z-depth of \(P\) at \((x,y)\)
 - If z-depth < x-buffer\([x,y]\) then
 - Intensity\([x,y]\) = intensity of \(P\) at \((x,y)\)
 - x-buffer\([x,y]\) = z-depth
 - Display Intensity array
Raytracing

- Basic approach
 - Cast ray from viewpoint through pixels into scene

- Given

 List of polygons \{ P_1, P_2, \ldots, P_n \}

 An array of intensity \[x, y \]

 For each pixel \((x, y) \) {

 form a ray \(R \) in object space through the camera position \(C \) and the pixel \((x, y) \)

 Intensity \[x, y \] = trace \(R \)

 }

 Display array Intensity

What does it look like?
Illumination Approaches

- Illumination problem
 - Model how objects interact with light
- Modeling solutions
 - Simple physics/optics
 - More realistic physics
 » Surface physics
 » Surface microstructure
 » Subsurface scattering
 » Shadows
 » Light transport

Simple Optics: Diffuse Reflection

Lambert’s Law:
the radiant energy from any small surface area dA in any direction \(\theta \) relative to the surface normal is proportional to \(\cos \theta \)

\[
I_{\text{diff}} = k_d I_l \cos \theta \\
= k_d I_l (N \cdot L)
\]

\(\theta \) = angle of incidence
Surface Physics

- Conductor (like metal)
- Dielectric (like glass)
- Composite (like plastic)
Subsurface Scattering

Shadows
How does it move?

Motion Dynamics Approaches

• Motion dynamics problem
 – Define geometric movements and deformations of objections under motion

• Dynamics solutions
 – Simulate physics of simple objects
 – Model structure and constraints
 – Capture motion from reality
 – Simulate group dynamics
 – Use your imagination
Simulate Physics

Motion Capture
Behavioral Simulation

Use Your Imagination

John Lasseter

Play
Tricks from Traditional Animation

• Squash and Stretch
 – Defining the rigidity and mass of an object by distorting its shape during an action

• Secondary Action
 – Action that results directly from another action

Why does it have to look like a photograph?
Artistic Rendering Approaches

• Artistic rendering problem (NPR)
 – Produce images from geometric models that are more expressive or mimic alternative media

• Artistic rendering solutions
 – Mimic characteristics of media
 – Physically simulate media
 – Break rules
 – Learn styles

Mimic media
Physical Media Simulation

Break Rules