Overview

IS 101Y/CMSC 104Y
First Year IT

Penny Rheingans
Susan Martin
University of Maryland Baltimore County

What is Computing/IT?
Why are you considering IT?

Course Objectives

• After this course, students should be able to:
 – Discuss the characteristics and challenges of key areas of the computing disciplines.
 – Analyze and present data to support informed decision-making.
 – Write basic programs using variables, conditional logic, and loops.
 – Demonstrate the skills necessary to succeed as a computing student and professional.
 – Work effectively in a team to solve a complex technological challenge.
This Course

• Experimental course (funded by NSF) for freshmen computing /IT majors

• Goals
 – Survey breadth, nature, challenges, and potential of computing disciplines
 – Clarify differences between IT majors at UMBC (BTA, IS, CMSC, CMPE)
 – Build experience working productively in teams
 – Develop key skills important to academic and professional success

• Assessment of impact and effectiveness
 – Survey
 – Focus group & end of semester interview
 – Review of assts

Consent Forms
Course Staff

• Instructors
 – Dr. Penny Rheingans
 » OH: Thurs 11:15-1
 – Dr. Susan Martin
 » OH:

• Teaching Fellows
 – Alec Pulianas (CMPE)
 » OH: Mon 1-2:15, Tues 11:15-12
 – Emily Scheerer (CMSC)
 » OH: Wed 2:30-4:30

• Peer Mentors
 – Tiffany Ernst (CMSC)
 – Marie Wagner (CMSC)
 – Clayonna Wheat (IS)
 – Max Weinberg (CMSC)

Computational Thinking (CT)

• Coined by Jeannette Wing, 2006
• Computational thinking involves solving problems, designing systems, and understanding human behavior, by drawing on the concepts fundamental to computer science.
CT Principles

• Connecting Computing
 – Identification of impacts of computing.
 – Description of connections between people and computing.
 – Explanation of connections between computing concepts.

• Developing computational artifacts
 – Creation of an artifact with a practical, personal, or societal intent.
 – Selection of appropriate techniques to develop a computational artifact.
 – Use of appropriate algorithmic and information-management principles.

CT Principles (cont.)

• Abstracting
 – Explanation of how data, information, or knowledge are represented for computational use.
 – Explanation of how abstractions are used in computation or modeling.
 – Identification of abstractions.
 – Description of modeling in a computational context.

• Analyzing problems and artifacts
 – Evaluation of a proposed solution to a problem.
 – Location and correction of errors.
 – Explanation of how an artifact functions.
 – Justification of appropriateness and correctness.
CT Principles (cont.)

• Communicating
 – Explanation of the meaning of a result in context.
 – Description using accurate and precise language, notation, or visualizations.
 – Summary of purpose.
• Working effectively in teams
 – Application of effective teamwork practices.
 – Collaboration of participants.
 – Production of artifacts that depend on active contributions from multiple participants.

Computing Content Units

• Big Ideas
 – Computational thinking
 – Algorithmic problem solving
 – Design and abstraction
• People
 – Graphics/games
 – Interfaces/accessibility
• Data
 – Big data and knowledge discovery
 – Visualization
• Hardware and Systems
 – Hardware and devices
 – Software systems
 – Cybersecurity
• Intelligence
 – Game play
 – Machine learning
Academic and Professional Skills

- Working effectively
 - As a student
 - As a team member
 - As a future professional
- Soft skills
 - Oral presentation
 - Technical communication
 - Networking
- Career planning

Administrivia

- Late policy
- Academic honesty
- Tentative schedule
- If not officially registered, see me after class
- Fellow student looking for a note-taker
Readings/Videos

- Processing text to act as tutorial/reference
 - Work along with reading assts
- Online articles
 - Mix of general and technical
 - Some will be challenging (strategy)
- Complete reading before day listed in syllabus
 - Quiz at beginning of each unit to assess readiness to begin exploration of unit
 - Followed by discussion of unclear concepts
- Some links to videos
 - May be more
 - Recommend your favorite to the class

Assignments

1. Surveys
2. Journal Entries (5)
3. Processing
4. Data for Decision-Making
5. Matlab
6. Resume and Cover Letter
7. Poster Draft (individual section)
Team Project

• Teams design, develop, demonstrate, evaluate, and present a system to simulate and explore the process of student progression -- the semester game

• Phases
 – Design
 – Prototype Demo
 – Prototype Evaluation
 – Poster
 – Presentation

Grade Components

• Team Components
 – Team Quizzes (5%)
 – Data Asst (5%)
 – Project (30%)

• Individual Components
 – Individual Quizzes (5%)
 – Individual Assts (25%)
 – Final (20%)

• Peer evaluation (10%)
Experiences with Teams

- Who has had experiences with team/group projects?
- What was good about team projects?
- What was frustrating?

Why Teams?

- Working on well-functioning teams is fun
- Students learn more and perform better on teams
- Working on teams helps students develop a network that will be useful in later classes
- Working on teams is a key skill required in for success in IT careers
How Teams?

• What might minimize negative aspects?

Team Structure

• Same teams for whole semester
• Team members receive same grade on team quizzes/assts/projs, except under extraordinary circumstances
• Peer evaluation as part of final grade
Form Teams

- Introductions
 - Name, contact info
 - Interests
 - Relevant experiences
 - Strengths/weaknesses
- Submit team roster
 - Team name
 - Team members with numbers
 - Weekly meeting time, location

Meet with Team

- Introductions
 - Name, contact info
 - Interests
 - Relevant experiences
 - Strengths/weaknesses
- Submit team roster
 - Team name
 - Team members with numbers
 - Weekly meeting time, location