OpenGL Extensions and Restrictions for PixelFlow

Jon Leech
University of North Carolina

April 20, 1998

Abstract

This document describes the extensions to OpenGL supported by the PixelFlow API,
restrictions forced by the architecture, and as-yet unimplemented features.

Copyright (©1995, 1996, 1997 The University of North Carolina at Chapel Hill.

This document contains unpublished proprietary information. Any copying, adapation, or
distribution of this document without the express written consent of the University of North
Carolina at Chapel Hill is strictly prohibited. The receipt or possession of this document does
not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture,
use, or sell anything that it may describe, in whole or in part.

READERS OUTSIDE UNC-CH AND HEWLETT-PACKARD PLEASE
NOTE: This is an internal working document. The final implementation may differ sub-
stantially.

PixelFlow is a trademark of the University of North Carolina.

OpenGL is a trademark of Silicon Graphics, Inc.

Contents

1

Introduction

1.1 Roadmap

1.2 Change Log

Frame Generation

2.1 Frame Setup

2.2 Geometry Definition o

2.3 Endof Frame

2.4 Example e

Controlling Primitive and State Distribution

3.1 Primitive Distribution Algorithmo

Extending the OpenGL Namespace

4.1 Functions

4.2 Enumerants

4.3 New Namespaces
4.3.1 Names of OpenGL Objects

Loading Application-Defined Code

Programmable Rasterization

6.1 Loading and Using Rasterizer Functions
6.1.1 Example.
6.2 Rasterizer API Definitions 0L
6.3 glVertex() and Sequence Pointso L
6.4 Vertex Array Extensions for Rasterizers and Shaders
6.5 Interpolators
6.6 Interpolator API Definitions
Programmable Shading
7.1 Creating Shaders
7.1.1 Example.
7.2 Using Shaders L
7.2.1 Example.
7.3 Shading API Definitions Lo
74 ToBe Done
Programmable Lighting
8.1 Creating Lights
8.1.1 Example.
8.2 Using Lights.
8.2.1 Example.
8.3 Light API Definitions L

10
10

12
12
12
12
13

13

14
15
16
16
17
17
18
18

19
20
20
21
21
23
26

9 Programming Other Pipeline Stages - to be written 30

9.1 Atmospheric. 30
9.2 Warping 30
10 Transparency and Other Blending Effects 30
10.1 Transparency o v v v i 30
10.1.1 Determining Transparency 31

11 Display List Optimization - to be written 31
12 Multiple Application Threads - to be written 31
13 OpenGL Variances - to be written 31
14 Unsupported OpenGL Features - to be written 32
15 Function, Enumerant, and Name Tables 32
15.1 Light Function and Parameter Names 32
15.2 Rasterizer Function and Parameter Names 33
15.3 Shader Function and Parameter Names 33
15.4 Atmospheric Function and Parameter Names 33
15.5 Interpolator Names 33
15.6 Defined Constants 35
16 Glossary 35
17 Credits 36
References 37

List of Tables

1 Built-in light source parameter names L. 32
2 Built-in rasterizer functions 33
3 Built-in material parameters L0 34
4 Built-in atmospheric parameters 34
5 Built-in interpolator names L 34
6 Defined constants 35

1 Introduction

This document describes the PzGL graphics API for the UNC/Hewlett-Packard PizelFlow
[3] architecture. PxGL is based on the OpenGL [1] API with extensions, restrictions, and
unimplemented features'. Only material which differs between PxGL and a conformant
OpenGL implementation is covered; readers are expected to be conversant with OpenGL
proper.

PixelFlow has enormous flexibility because almost all stages of the graphics pipeline
- transformation, rasterization, and shading - are implemented with user-programmable
hardware. In order to exploit this capability in the framework of a traditional graphics API,

we have extended OpenGL to specify

e When to load and invoke application-defined code (rather than built-in functionality,
such as rendering lit, Gouraud-shaded triangles).

e Which stage of the pipeline to invoke it at.

e What parameters to pass when the code 1s executed.

To optimize performance of OpenGL code on PixelFlow, some architectural details of the
machine are exposed to the API. Using these features may relax some OpenGL guarantees
or invariants in return for greatly improved performance. They include

e Primitive and state distribution, which balances rendering load across the parallel
geometry processors while affecting the order in which primitives are composited into
the frame buffer.

e Display list optimization, which increases performance of upper stages of the
pipeline while relaxing knowledge of global state.

While PixelFlow has far more flexibility in most respects than more traditional graphics
accelerators, it also has certain constraints not present in those machines. Most notably, the
nature of the image-composition architecture forces a frame oriented paradigm on the API,
and implies that there is no valid frame buffer containing pixel colors until after rasterization
and shading of all primitives in that frame is complete. PixelFlow also uses a deferred
shading model, in which pixel color is not computed until after visibility determination.
The consequences of these and other minor architectural and design decisions are that

e Additional, non-standard OpenGL calls are required to delimit the start and end of
frame generation.

e Much of the global rendering state (textures, lights, view matrices, and other state
which is not associated to individual primitives) must be defined prior to start of frame
and may not change within the frame.

e Many API calls are only allowed at specific points in the process of generating a frame.

1PixelFlow will support a fully conformant OpenGL API, but in general that mode will not be used
because of its expected substantial performance cost.

e Most types of blending and stenciling are not supported, and composition order of
primitives is not guaranteed.

e Access to the frame buffer may only take place after end of frame.

Finally, many features of the rich OpenGL API are not implemented in PxGL at this
time, though they may be added later.

1.1 Roadmap

The remainder of this document will address the following areas:

e Frame generation (§2).

e Controlling primitive and state distribution (§3).
e Extending the OpenGL namespace (§4).
¢ Loading application-defined code (§5).

e Programmable rasterization (§6).

e Programmable shading (§7).

e Programmable lighting (§8).

e Used-defined functions (§77).

e Other programmable pipeline stages (§9).
e Transparency and shadows effects (§10).
e Display list optimization (§11).

e Multiple application threads (§12).

e OpenGL variances (§13).

e Unsupported OpenGL features (§14).

1.2 Change Log

This is revision Revision : 1.9 of Source : /tmpynt/net/hydra/pp0/doc/software/opengl/tex/RCS/prgl.tex, v.
Changes from the next most recent revision are delimited by change bars (or approximations
thereof in the HTML version).

Changes in revision 1.9 (July 22, 1997):

e Changed all uses of glInquireParameterEXT() to
glGetMaterialParameterNameEXT() or glGetRastParameterNameEXT()
as appropriate.

e Note that glGetLightParameterNameEXT() and other stage-specific inquiry
functions will need to be documented and created.

e Added to section on primitive and state distribution, including
pxDistributionMode() and glGenDataEXT().

o Added section on user-defined functions.
Changes in revision 1.8 (August 1, 1996):

e Changed references from Division to Hewlett-Packard to reflect PFX sale to HP.

e Added new inquiry calls for rasterizer and shader parameters (though details remain
to be documented).

e Rearranged glossary entries in section 7 to group parameter terminology together, at
Rich Holloway’s suggestion.

e Added section on transparency and blending effects, including
glTransparencyEXT().

Changes in revision 1.7 (March 22, 1996):

e glShaderEXT() now allows different shaders on front and back faces of primitives.

e Added discussion to glSurfaceEXT() definition of the restriction of a single value
for uniform and nonvarying parameters, regardless of whether the front or back face
of a primitive is being rasterized.

e Added discussion to glMaterialVaryingEXT() definition of the reason for the
apparently-redundant shaderid argument.

e Added glLightModelEXT() to lighting chapter, specifying that user-defined shader
parameters are handled in the same way as OpenGL material parameters.

Changes in revision 1.6 (February 12, 1996):

e First version released to outside readers; added disclaimers.

e Removed definitions of hardware-specific terms like composition/geometry network
parameters, and changed definitions of varying/nonvarying/uniform parameters to
eliminate dependence on those terms.

e Added face argument to glSurfaceEXT().
Changes in revision 1.5 (December 17, 1995):

e Added calls for light groups and loadable light functions.

e Removed glGenShaderEXT() and folded its functionality into
glNewShaderEXT().

e Added sections (though little text yet) for atmospheric and image warping shader
stages.

e Changed glSurfaceParamEXT() to glRastParamEXT() to avoid too-close simi-
larity to glSurfaceEXT().

e Updated to reflect separate-namespace model for parameters and separation of in-
stance and current values. In particular, glBindParameterEXT () has been replaced
by glSurfaceEXT(). although the name of the latter may change.

e Rewrote interpolator introduction.
Changes in revision 1.4 (November 14, 1995):
e Moved document from ETEX 2.09 to IXTEX 2¢.
e Added changebars using changebar.sty.
Changes in revision 1.3 (November 11, 1995):

e Added flat interpolator for per-primitive constant parameters.

¢ Added glBindParameterEXT() and glGetParameterEXT().

e glShaderEXT() now takes a face argument. Added GL_FRONT_SHADER EXT and
GL_BACK_SHADER EXT as targets to glGet().

e Worked on definitions of composition network and geometry network parameters; more

work 1s needed.

2 Frame Generation

The underlying hardware model in OpenGL is that primitives are specified by the application
and immediately drawn - vertices are transformed and lit, rasterization and texturing are
done, and final pixel colors are copied into the frame buffer, or blended with existing frame
buffer contents. Global parameters affecting transformation, rasterization, and shading of
primitives, such as the projection matrix, light bindings, blending modes, and so on, may
be changed at any time.

This model is not compatible with PixelFlow’s image composition and deferred shading
paradigms. In order to achieve good performance on the machine, the API must be frame-
oriented; that is, it must specify several stages in the process of generating a frame, and
different types of OpenGL operations may occur only during specific stages. The stages and
the types of calls that may take place during them are:

e Frame setup - establish viewing, lighting., and shading parameters that will apply
throughout the frame.

¢ Geometry definition - traverse the database, rasterizing primitives.

e End of frame - perform image composition, shade pixels, and read/write directly to
the frame buffer.

2.1 Frame Setup

The setup stage begins by calling glBeginFrameEXT(). In this stage, parameters which
globally affect the scene are defined. This includes defining the projection matrix, loading
light functions, creating lights and light groups, changing light source parameters, loading
shader functions, creating shaders, changing nonvarying shader parameters, loading ras-
terizer functions, binding textures, and any other operations that must be known before
primitives can be rasterized and shaded (a complete list of OpenGL calls and the stages
they may be called for is in section 13). Parameters of the scene such as the viewport size,
antialiasing kernel, and background color are also set here; these must be known to define
the rendering recipe.

PxGL currently allows only a single projection matrix to be used during a frame. Many
lighting environments may be used, but they must be defined as light groups. Many textures
may be used, but they must be defined during frame setup using the texture object calls?.

2.2 Geometry Definition

The geometry stage begins by calling glStart GeometryEXT(). In this stage, primitives
are defined and rasterized by different rasterizer boards. Valid calls include operations on
the modelling and texture matrices, setting material values and other attributes, changing
the current texture, and other changes to global state which affect only transformation and
rasterization. Display lists may be compiled and executed. or primitives may be issued in
immediate mode.

2.3 End of Frame

The final stage begins when glEndFrameEXT() is called. Once it returns, the frame
buffer is defined. At this time it may be accessed using functions like glReadPixels()
or glCopyTexture()3. We expect to support other frame buffer operations such as
glAccum() at a later date.

2.4 Example

This code fragment draws a frame containing a single red triangle. Lights are assumed to
have been defined previously.

glBeginFrameEXT();

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 3.0);

2The reason for these restrictions is that while performing deferred shading, the viewing, lighting, and
texturing environment is assumed to be the same for all samples. If this were not the case, such information
would have to be encoded along with each sample, which would enormously increase the amount of pixel
memory needed for a sample. By creating named objects representing these environments, we regain this
capability, although not at OpenGL’s per-primitive granularity.

3Hopefully, for e.g. shadow maps.

glMatrixMode (GL_MODELVIEW) ;
glTranslatef(0.0, 0.0, -2.0);

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glStartGeometryEXT();

glColor3£f(1.0, 0.0, 0.0);
ngegin(GL_TRIANGLES);
glVertex3f(-1.0, -1.0, 0.0)
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(1.0, -1.0, 0.0)
glEnd();

>

> ’

glEndFrameEXT();

Example - Frame generation

3 Controlling Primitive and State Distribution

The PixelFlow architecture achieves scalability by using many parallel rasterizers, each
of which is responsible for transforming and rasterizing a portion of the database, and
shaders, each of which is responsible for lighting and shading a portion of the pixels in the
image. However, primitives are defined in sequential order by the application. So to achieve
good rasterization performance, all the primitives defined in the course of a frame must be
distributed among the rasterizers.

PxGL has a built-in distribution algorithm, and in most cases, an application does not
need to be aware of or make changes in this algorithm. However, in some cases application
performance can be increased by modifying how primitives are distributed.

This section describes how primitives are distributed. the implications of the distribu-
tion algorithm on graphical state maintenance and performance, and how applications may
control distribution.

3.1 Primitive Distribution Algorithm

In the remainder of this section, we assume that a PixelFlow system with N rasterizer boards
is being used, and that M geometric primitives are to be distributed, where M > N.

To be done: call to specify processor groups + comments on ordering implications of
distributing primitives, state maintenance, per-verter state not neccessarily affecting global
state.

The calls controlling distribution are*

GLenum pxDistributionMode(GLenum type, GLenum mode, GLint param)

4The pbase headers don’t use GL types for the prototypes, and return void - this inconsistency needs to
be resolved.

10

GLenum

Changes how GL commands are distributed to rasterizers and shaders. type specifies
the type of commands to be affected, and may take on the following values:

PX_PRIMITIVE EXT - affects sequences of commands delimited by a
glBegin() ...glEnd() block, which are normally rasterizer primitives such
as triangles.

PX_STATE EXT - affects all other commands not within a block®.
PX_TEXTURE_EXT - affects textures®.

mode specifies how that type of command is distributed, and may take on the
following values:

PX_DEFAULT EXT - commands are sent in according a default mapping
scheme.

PX_BROADCAST EXT - commands are sent to all rasterizers that may use
them.

PX_ROUND ROBIN_EXT - commands are sent to a single rasterizer or shader,
but successive commands are sent to different rasterizers or shaders in a
simple sequence specified by param, for load balancing purposes.
PX_ROUND ROBIN _WEIGHTED EXT - commands are sent to a single rasterizer or
shader, but successive commands are sent to different rasterizers or shaders
in a sequence determined by the cost of the commands, for load balancing
purposes” .

PX_SPECIFIED GPS_EXT - commands are sent to a set of rasterizers and
shaders specified by param?®.

param controls details of the distribution. For PX_ROUND ROBIN EXT mode, it is
the blocking factor - param commands are sent to each rasterizer or shader before
shifting to the next. For PX_SPECIFIED GPS_EXT mode, it is the rasterizer to send
commands to. param is currently ignored for the other modes.

GL_INVALID ENUM is generated if {ype or mode are not one of the allowed values.
GL_INVALID.VALUE is generated if param is less than 1 (for GL_ROUND_ROBIN_EXT
mode) or an invalid rasterizer or shader ID (for GL_SPECIFIED GPS_EXT mode).

pxGetDistributionMode(GLenum type, GLenum *mode, GLint *param)

Returns the distribution mode and param used for the specified type of command.
This call may not be placed in a display list.

GL_INVALID_ENUM is generated if ¢ype is not one of the valid command types passed
to pxDistributionMode().

5Not implemented; may never be implemented

8Which commands are “textures”, exactly?

"How might this be parameterized?

8Eventually, param will specify a processor group ID, referring to an arbitrary set of processors established
with other pxgl calls. At present, it is just a rasterizer number, with rasterizers numbered starting at 0.

11

4 Extending the OpenGL Namespace

The C language binding of OpenGL [2] includes several namespaces: functions, types, and
enumerants. PxGL extends the function and enumerant namespaces and adds several new
namespaces: shader parameters, shader functions. light parameters. light functions. raster-
wzer parameters, rasterizer functions, and interpolators. Examples of these namespaces are
given.

In accordance with the ARB® guidelines for extensions to OpenGL, all additions to the
existing namespaces are postfixed by EXT for functions and _EXT for enumerants.

4.1 Functions

The function namespace refers to C calls made by an application, such as
glBegin() and glEnable(). About 20 new calls are introduced in PxGL, such as
glStart GeometryEXT() and glShaderEXT(). New calls are discussed in detail else-
where in this document.

4.2 Enumerants

The enumerant namespace refers to compile-time integral constants used to denote options,
values, flags, and other parameters to API functions. PxGL adds enumerants for the new
calls it introduces, such as GL_ALL PRIMITIVES EXT (an allowed parameter to the function
glMaterialInterpEXT()). PxGL also allows some existing functions to accept additional
enumerant values in the context of extensions, such as passing an enumerant denoting a
user-defined sphere rasterizer to glBegin() (which normally accepts only enumerants corre-
sponding to the primitives defined in OpenGL). Finally, some existing functions will generate
or return new enumerant values, such as GL_UNSUPPORTED OPERATION_EXT (which may be
generated by calling functions in unsupported modes, and later returned by glGetError()).

4.3 New Namespaces

Application-defined code may be inserted at many stages of the graphics pipeline, primarily
for rasterization, surface shading, and lighting. To call this code and pass appropriate values
to it, several new namespaces are introduced corresponding to the various types of code and
parameters.

Because such code (with the exception of built-in functionality like triangle rasterizers
or the OpenGL shading model) is not known at compile time, a way to dynamically define
the namespaces is needed. This is accomplished by functions which map from ASCII string
names of code and parameters to numeric identifiers'® which are passed to PxGL calls'!.

The new namespaces and the sections in which their uses are discussed are

e Rasterizer functions and parameters, and parameter interpolators (§6).

20penGL Architecture Review Board.

10Should generated IDs be GLenum or GLuint? Adding enumerants at runtime is of questionable legality;
using integers causes incompatibilities with existing calls like glMaterial().

11Tt would be possible to pass names everywhere and avoid this mapping, at enormous performance cost.

12

Shader functions, instances, and parameters (§7).

Light functions, instances, and parameters (§8).
e Atmospheric functions and parameters (§9.1).

e Image manipulation functions and parameters (§9.2).

4.3.1 Names of OpenGL Objects

OpenGL parameters such as light and material properties are given string names (§15).
There are unique parameter IDs corresponding to the different parameters, such as am-
bient light color and ambient surface color. This differs from OpenGL, where the same
pname, such as GL_AMBIENT, may be used to refer to both light and material properties. For
backwards compatibility, the OpenGL IDs are accepted as aliases of the actual parameter
IDs.

Stuff to be done. ..

e Querying instance/global, interpolator, and default value for shader parameters
e Built-in shader function, shader parameters (also for rasterizers, lights, etc.)
e Specifying transformation of parameters (also for rasterizers, lights, etc.)

e Talk some more about the parameter namespaces and how they relate to OpenGL
pnames.

5 Loading Application-Defined Code

Adding application-defined code written in the PixelFlow shading language [5] to the PxGL
graphics pipeline is done at runtime!?.

The application identifies such code using string names that symbolically refer to different
modules; the API hides details of how the names are mapped into object files which are
loaded into the hardware!®. For example, a light function using the Torrance-Sparrow
model might be named torrance; a sphere rasterizer function might be named sphere: and
a marble shader function might be named marble.

Application-defined code may be loaded using this call:

GLenum glloadExtensionCodeEXT(GLenum stage 14, const GLubyte *name)

12The mechanism used involves compiling code in the shading language into shared object files that are
loaded on demand.

13 Although we can expect that the name will either be a Unix filename component, or a key to look up a
filename.

14Do we want to load code for different stages with a single interface? We distinguish between stages with
glGetMaterialParameterNameEXT() and glGetRastParameterNameEXT () for example.

13

Loads application-defined code for the specified pipeline stage identified by name.
Returns an enumerated id which is passed to other calls controlling when the code
is to be used.

May be called with a built-in function or called again for application-defined code
that’s already been loaded. No action is taken, but the same valid id is returned.

stage may take on the following values:

GL_LIGHT FUNCTION EXT - load a light function. id is passed to

glNewLightEXT().

GL_RASTERIZER FUNCTION_EXT - load a rasterizer function. id is passed to
glBegin().

GL_SHADER FUNCTION EXT - load a shading function. id is passed to
glNewShaderEXT().

GL_ATMOSPHERIC FUNCTION EXT - load an atmospheric function. id 1is
passed to'®.

GL_WARPING FUNCTION_EXT - load an image warping function. id is passed
to'6.

GL_INVALID ENUM is generated if stage is not one of the allowed values, and 0 is
returned.

GL_INVALID VALUE is generated if name does not exist, and 0 is returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), and 0 is returned.

Code loaded with glLoadExtensionCodeEXT() usually has associated parameters;
rasterizers may also have associated interpolators. Loading code may have the side effect of
extending those namespaces. At present, there is a single namespace for parameters even
though they are accessed by different calls depending on the stage in which those parameters
are used. Thus, we require user-defined namespace scoping to distinguish both the stage
and the specific object within that stage which the parameter applies to; for example,
rast_sphere radius and shader_polkadot_radius”.

To map parameter names into identifiers, use the calls
glGetMaterialParameterNameEXT() or glGetRastParameterNameEXT().

6 Programmable Rasterization

The programmable rasterization model used in PxGL extends the glBegin() / glEnd()
mechanism used to define built-in primitive types such as triangles and lines. These new
terms are introduced:

15Yes, to what?
16 And again, to what?
17We should recommend namespace conventions.

14

Interpolator - A method for combining parameter values specified at one or more discrete
locations on a primitive being rasterized to generate values for that parameter at
all other locations on the primitive where it is not specified. The most common
interpolators are named constant (corresponding to flat shading on a primitive), flat
(corresponding to glShadeModel (GL_FLAT), e.g. flat shading on individual polygons
within a primitive), and and linear (corresponding to glShadeModel (GL_SMOOTH),
e.g. Gouraud shading on polygons within a primitive). Other interpolator types may
be defined for user-specified rasterizer functions.

Since interpolation considered as a mathematical process is tightly bound to the geo-
metrical definition of a surface, most interpolators are only defined for specific types of
primitives. Interpolators have string names and corresponding enumerated parameter
IDs, referred to as interpname and interpid in code examples

Rasterizer Function - A function which takes as input a set of rasterizer parameters and
generates screen-space samples at which the function is visible. A rasterizer function
represents a type of geometric primitive; its parameters determine a specific instance
of that geometry. In abstract terms, the function creates geometry, transforms it
according to the current model-view and projection matrices, and samples it. At
visible samples, shader parameters defined for the current shader are computed using
a specified parameter interpolator and copied into the sample buffer.

Rasterizer Parameter - A parameter to a rasterizer function. Some examples include
vertices of polygons, sphere radii, or control points of parametric patches.

Sequence Point - Specifies the binding time for a group of rasterizer and shader parame-
ters. A rasterizer function may require one or more sequence points to define a specific
instance of its geometry. In many cases, including all the OpenGL primitive types, the
rasterizer parameters bound at the sequence point will simply be vertices of a surface.
Other examples include center and radii of spheres, twist vectors of Hermite patches,

or coefficients of general quadric surfaces!®.

6.1 Loading and Using Rasterizer Functions
To use an application-defined rasterizer function, the following steps must be taken:
e Load the rasterizer function and obtain its ID with glLoad ExtensionCodeEXT()

e Obtain parameter 1Ds of rasterizer parameters using
glGetRastParameterNameEXT().

e Call glBegin() with the rasterizer ID to start delimiting sequence points of a rasterizer
function.

e Specify rasterizer parameters using glRastParamEXT() and bind them using
glSequencePointEXT().

18 Rasterizer writers will have to document which parameters are per-block and which are per-sequence-
point.

15

e Call glEnd() to finish delimiting sequence points of the function and call the rasterizer
function.

6.1.1 Example

In the following example, a rasterizer function named spheres is loaded. The function
has two parameters, the center and radius of the sphere; each sequence point defines a
separate sphere. Two unit-radius spheres which touch at the origin and are centered at

(1,0,0) and (-1,0,0) are drawn.

// Load the rasterizer and obtain its ID
GLenum spherefuncid =
glLoadExtensionCodeEXT(GL_RASTERIZER_FUNCTION_EXT, "spheres");

// Obtain IDs for named parameters
GLenum centerid = glGetRastParameterNameParameterEXT("rast_sphere_center");
GLenum radiusid = glGetRastParameterNameParameterEXT("rast_sphere_radius");

glBeginFrameEXT();
glStartGeometryEXT();

GLfloat vertminus[3] = { -1, 0, 0 };
GLfloat vertplus[3] = { 1, 0, 0 };

// Draw the two spheres

glRastParamfEXT(radiusid, 1.0);

glBegin(spherefuncid);
glRastParamfvEXT(centerid, &vertminus);
glSequencePointEXT();

glRastParamfvEXT(centerid, &vertplus);
glSequencePointEXT();
glEnd();

Example - Using rasterizer functions

6.2 Rasterizer API Definitions

There is currently an naming inconsistency where some calls use RastParam and others
use RastParameter. This should be resolved, probably in favor of the latter.

void glGetRastParamEXT(GLenum paramid, TYPE *params)

Returns the value of the specified parameter in params.

GL_INVALID ENUM is generated if paramid is not a valid rasterizer parameter.

16

GLenum glGetRastParameterNameEXT(GLchar *name_string)

Returns the parameter ID corresponding to the string name.

GL_INVALID NAME _STRING_EXT is generated if string is not a parameter of any ras-
terizer, and 0 is returned.

GLchar * glGetRastParameterStringEXT(GLenum pname)

Returns the string name corresponding to the specified parameter 1D.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and NULL is
returned.

void glSequencePointEXT()

Binds parameters of the rasterizer and shader functions in use.

GL_INVALID OPERATION is generated when glSequencePointEXT() is called other
than between glBegin() and glEnd().

void glRastParamEXT(GLenum paramid, TYPE params)

glRastParam assigns values to rasterizer parameters. paramid specifies which
parameter will be modified. params specifies what value or values will be assigned
to the parameter.

GL_INVALID VALUE is generated if param:d is not a defined rasterizer parameter 1D.

6.3 glVertex() and Sequence Points

Vertices defining built-in primitive types are rasterizer parameters. The following two code
sequences have identical effects:

glVertex3f(x,y,z);

Defining a vertex using glVertex()

GLenum vertid = glGetRastParameterNameEXT("gl_vertex");
GLfloat point[4] = { x, y, z, 1.0 };

glRastParamfvEXT(vertid, &point);
glSequencePointEXT();

Defining a vertex using rasterizer extensions

6.4 Vertex Array Extensions for Rasterizers and Shaders

These will be needed, but can’t be finalized until the GL 1.1 specification is out.

17

6.5 Interpolators

Every rasterizer function has one or more interpolators associated with its geometry, which
take shader parameters specified at control points and generate parameter values at all
samples. All rasterizers may use the constant interpolator, which copies a single value into
all samples. Rasterizers defined by OpenGL all support the flat interpolator, which copies
a separate constant value into each successive primitive (triangle, line segment, quadrilat-
eral, etc.) in a group, and the linear interpolator, which fits a linear function (possibly
perspective-corrected) to the first two or three vertices of a primitive.

There is also an implicit interpolator, which ignores parameter values specified at se-
quence points. Its exact function varies depending on the rasterizer and parameter type.
For built-in rasterizers, the implicit interpolator can only be applied to texture coordinates,
implementing the functionality of glTexGen().

Other types of rasterizers may use these interpolators, if they make sense, or define new
interpolators corresponding to their geometry!'®. For example, a triangle with 3 additional
sequence points at the midpoints of its edges might define a quadratic interpolator, to al-
low smoother shading between triangles. A parametric patch might define an interpolator
which applies the same weights to shader parameters as to control points. A sphere or gen-
eral quadric surface rasterizer might interpret the tmplicit interpolator to generate texture
coordinates and normals based on the intrinsic geometry of the surface.

6.6 Interpolator API Definitions

void glGetMaterialInterpEXT(GLenum paramid, GLenum primtype, GLenum
*xinterpid)

Returns the interpolator used for rasterizing the specified shader parameter for the
specified primitive type.

GL_INVALID_ENUM is generated if paramid is not a valid shader parameter or if prim-
type 1s not a valid primitive type.

void glMaterialIlnterpEXT(GLenum paramid, GLenum primtype, GLenum interpid)

Sets the interpolator to be used for rasterizing the specified shader parameter for
the specified primitive type. A primitive type is required because most interpolators
are defined only for specific types of geometry.

interpid 1s usually an interpolator ID for a specific primitive. Five interpolators are
built-into PxGL:

GL_IMPLICIT_INTERPOLATOR_EXT is implemented for texture coordinates in built-in
rasterizers, according to the glTexGen() parameters?’. When rasterizing user de-
fined primitives, it is intended to allow generating normals and texture coordinates
based on the intrinsic geometry of the object.

GL_CONSTANT_INTERPOLATOR EXT copies the parameter value current when

19We don’t have a way to get IDs for interpolators loaded as part of rasterizers, yet - something like a
glGetInterpolatorNameEXT() call is needed.
20D we want to implement it for surface normals, too?

18

glBegin() is called into all samples rasterized for that primitive or group of prim-
itives. It is guaranteed to be implemented for all primitive types and all parameter

types.

GL_FLAT_INTERPOLATOR EXT copies the parameter value current when the last vertex
or sequence point defining a primitive is called into all samples rasterized for that
primitive. Unlike the constant interpolator, a group of primitives defined in a
glBegin() / glEnd() block may have a different value specified for each primitive.
This corresponds to glShadeModelEXT (GLFLAT).

GL_LINEAR_INTERPOLATOR EXT is implemented for all built-in primitive types and
parameters, and corresponds to glShadeModel (GL_SMOOTH)?!.

GL_DEFAULT_INTERPOLATOR EXT is a way to specify the most “natural” type of in-
terpolator for a primitive; linear for a polygon, implicit for a sphere, bicubic for a
patch, and so on.

primtype is either a valid primitive type or the special value
GL_ALL PRIMITIVES EXT. In the latter case, only GL_CONSTANT INTERPOLATOR EXT.
GL_FLAT_INTERPOLATOR EXT. or GL_DEFAULT_INTERPOLATOR _EXT may be specified.

GL_INVALID_ENUM is generated if paramidis not a valid shader parameter, if primtype
is neither a valid primitive type nor GL_ALL_PRIMITIVES EXT. or if interpid is not a
valid interpolator.

GL_INVALID OPERATION is generated if interpid is not defined for the specified
paramid and primtype.

To be added: glGenDataEXT() and glDeleteDataEXT().

7 Programmable Shading

The programmable shading model used in PxGL is based on the RenderMan [4] shading
language, but use of some terms differ and these new terms are introduced:

Shader Function - A function, either built-in to PxGL or loaded at runtime, which takes
as input a set of shader parameters and generates as output a color. A shader function
is conceptually applied to each sample of a primitive which was rasterized with a cor-

responding shader applied??. Shader functions have string names and corresponding

enumerated IDs, referred to as shaderfunc and shaderfuncid in code examples.

Shader - An instance of a shader function which binds a subset of the function’s parameters
to be nonvarying for all samples to which the shader is applied. This is done primarily
to increase rasterization and shading speed and to reduce traffic on the PixelFlow
image composition network. Shaders have enumerated IDs, referred to as shaderid
in code examples.

2INote that in PxGL, interpolation is applied to shading parameters before lighting, rather than to color
after lighting, as in OpenGL. This allows true Phong shading, avoiding the artifacts caused by OpenGL’s
Gouraud interpolation of Phong-lit vertices.

22Deferred shading means that in practice, only samples which affect visibility are actually shaded.

19

Shader Parameter - An input argument to a shader function. These fall into three types
depending on how they arrive at the shading hardware: wuniform, nonvarying, and
varying parameters. Shader parameters have string names and corresponding enu-
merated IDs, referred to as paramname and paramid?? in code examples.

Nonvarying Parameter - A shader parameter whose value is the same for all sam-
ples rasterized using that shader. A non-uniform parameter of a shader function

may be chosen to be either nonvarying or wvarying on a per-shader basis using
glMaterial VaryingEXT().

Uniform Parameter - A shader parameter whose value is the same for all samples ras-
terized using that shader. Uniform parameters cannot be made varying®*.

Varying Parameter - A shader parameter whose value may be different in each sample
rasterized using that shader.

7.1 Creating Shaders

To create a shader, the following steps must be taken:

e Load a shader function and obtain its ID with glLoadExtensionCodeEXT().

Create the new shader and obtain a shader ID using glNewShaderEXT().

Obtain parameter 1Ds of shader parameters using
glGetMaterialParameterNameEXT().

Specify which shader parameters are varying using glMaterialVaryingEXT() (all
parameters not otherwise specified are assumed to be uniform).

¢ Instantiate the shader with glEndShaderEXT().

After creating the shader, nonvarying parameter values may be set wusing
glSurfaceEXT(). These parameter values can be changed at any time before start of
geometry.

7.1.1 Example

This code fragment loads a hypothetical shader function named phong shader. The
shader function has two parameters, named gl shader_color (intrinsic color) and

230penGL uses pname to refer to material parameters such as emission color, which are shader parameters
of the builtin OpenGL shading model. This discrepancy should be resolved; Rich suggests an explanation
of parameter names vs. parameter IDs.

24The distinction between uniform parameters and nonvarying parameters is subtle from the user’s point
of view, and these definitions need work: both are sent to the shader GPs over the geometry network, but
uniform parameters are held on the GP during shading code execution, while nonvarying parameters are
copied into pixel memory. The distinction is primarily an efficiency measure to reduce composition network
bandwidth requirements.

20

gl _shader normal (surface normal)?®. Two shaders are created. The first, phongshader,
allows both color and normal to vary. The second, redshader, has a nonvarying intrinsic

color of red.

// Load the named shader and obtain its ID
GLenum phongfuncid =
glLoadExtensionCodeEXT (GL_SHADER_FUNCTION_EXT, 'phong_shader");

// Obtain IDs for named parameters
GLenum colorid = glGetMaterialParameterNameEXT("gl_shader_color");
Glenum normalid = glGetMaterialParameterNameEXT("gl_shader_normal");

// Create a shader with ID ’phongshader’, allowing both parameters to vary

GLenum phongshader = glNewShaderEXT(phongfuncid);
glMaterialVaryingEXT(phongshader, colorid);
glMaterialVaryingEXT(phongshader, normalid);

glEndShaderEXT();

// Create ’redshader’, allowing only normals to vary and

// binding the nonvarying color to red.

GLfloat red[3] = { 1, 0, 0 };

GLenum redshader = glNewShaderEXT(phongfuncid);
glMaterialVaryingEXT(redshader, normalid);

glEndShaderEXT();

glSurfacefvEXT(redshader, colorid, &red);

Example - Creating shaders

7.2 Using Shaders
To use a shader once it has been created, the following steps must be taken:
e Select the shader using glShaderEXT().

e Specify the interpolation method to be used for warying shader parameters using
glMaterialInterpEXT().

e Define a primitive, setting values of varying shader parameters using glMaterial().

7.2.1 Example

This continues the previous example, defining three triangles. The first uses redshader
to draw a red phong-lit triangle with linearly interpolated normals. The second uses
phongshader to draw a vertex-colored triangle using linear interpolation of the vertex colors.
The third uses phongshader to draw a green triangle using constant interpolation.

25Note that these parameters are also parameters of the built-in OpenGL shader; they are used by the
loadable shader so the example can make shortcut calls like gINormal() and glColor() to specify shader
parameters, rather than glMaterial().

21

// Select the red-colored shader
glShaderEXT(GL_FRONT_AND_BACK, redshader);

// Choose a linear interpolator for normals and draw a red
// phong-shaded triangle.
glMaterialInterpEXT(normalid, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);

glBegin(GL_TRIANGLES) ;
for (i = 0; i < 3; i++) {
glNormal3fv(normall[il);
glVertex3fv(vertex[i]);
}
glEnd();

// Select the phong shader, use linear interpolation for color,
// and draw a vertex-colored phong-shaded triangle
glShaderEXT(GL_FRONT_AND_BACK, phongshader);

glMaterialInterpEXT(colorid, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);

glBegin(GL_TRIANGLES) ;
for (i = 0; i < 3; i++) {
glColor3fv(color[il);
glNormal3fv(normall[il);
glVertex3fv(vertex[i]);
}
glEnd();

// Change to constant interpolation for color, and draw a green
// phong-shaded triangle.
glMaterialInterpEXT(colorid, GL_TRIANGLES, GL_CONSTANT_INTERPOLATOR_EXT);

GLfloat green[3] = { 0, 1, 0 };
glColor3fv(green);

glBegin(GL_TRIANGLES) ;
for (1 = 0; i < 3; i++) {
glNormal3fv(normall[il);
glVertex3fv(vertex[i]);
}
glEnd();

Example - Using shaders

There is a subtle difference between the first and third triangles: the first uses a shader
where color is nonvarying, so that all primitives rendered using that shader will be red. The
third triangle uses a shader where color is varying, but the constant interpolator causes the

22

color to be fixed on that particular triangle?®.

7.3 Shading API Definitions

void glDeleteShaderEXT(GLuint shaderid)

Removes the definition of the specified shader; shaderid is unused after this call.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

void glEndShaderEXT()

Instantiates a shader created by glNewShaderEXT(). All shader parameters
which are not explicitly specified in previous calls to glMaterialVaryingEXT()
are made nonvarying; values of these parameters are set with glSurfaceEXT().

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), or when not preceded by a corresponding
glNewShaderEXT().

void glGet(GLenum pname, TYPE *params)

glGet() is extended to accept parameters GL_FRONT_SHADER EXT and
GL_BACK_SHADER EXT, which return the current front and back face shaders
as specified via glShaderEXT().

void glGetMaterial(GLenum face, GLenum paramid, TYPE *params)

glGetMaterial() is extended so that paramid can refer to shader parameters de-
fined by dynamically loaded shaders.

GL_INVALID_ENUM is generated if paramid is not a valid shader parameter.
GLenum glGetMaterialParameterNameEXT(GLchar *name_string)

Returns the parameter ID corresponding to the string name_string.
GL_INVALID NAME_STRING_EXT is generated if name_string is not a parameter of any
shader, and 0 is returned.

void glGetMaterialParametersEXT(GLuint shaderid, GLenum *pnames)

Returns a list of parameter IDs wused by the specified shader.
pnames must have room for at least the number of IDs specified by
glGetNumMaterialParametersEXT().

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

26 The purpose of the constant interpolator is to reduce work done during rasterization; it’s appropriate
when performing (for example) flat shading. The same visual effect could also be achieved by using the
linear interpolator and specifying the same color at each vertex, but rasterization speed would be lower.

23

GLchar * glGetMaterialParameterStringEXT(GLenum pname)

GLuint

Returns the string name corresponding to the specified parameter 1D.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and NULL is
returned.

glGetNumMaterialParametersEXT(GLuint shaderid)

Returns the number of material parameters accepted by the specified shader. Used
in conjunction with glGetMaterialParametersEXT().

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

void glGetSurfaceEXT(GLuint shaderid, GLenum face, GLenum paramid, TYPE
*params)

Retrieves the value of a nonvarying parameter of the specified shader. Bound values
are set by glSurfaceEXT().

GL_INVALID ENUM is generated if face is not GL_FRONT or GL_BACK, or if param:d is
not a bound parameter of shaderid.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GLboolean glIsMaterialParameterEXT(GLuint shaderid, GLenum pname)

Returns TRUE if pname is a parameter of the specified shader, FALSE otherwise.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID, and FALSE is

returned.

GL_INVALID ENUM is generated if pname is not a valid parameter 1D, and FALSE is
returned.

GLboolean glIsMaterialUniformEXT(GLuint shaderid, GLenum pname)

Returns TRUE if pname is a uniform parameter of the specified shader, FALSE oth-
erwise.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID, and FALSE is
returned.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and FALSE is
returned.

GLboolean glIsShaderEXT(GLuint shaderid)

Returns TRUE if shaderid is used for an existing shader, FALSE otherwise.

void glMaterial(GLenum face, GLenum paramid, TYPE params)

glMaterial() is extended so that paramid can refer to shader parameters defined
by dynamically loaded shader functions.

GL_INVALID ENUM is generated if paramid is not a shader parameter either of the
built-in OpenGL shading function or of a shader function previously loaded.

24

void glMaterialVaryingEXT(GLuint shaderid, GLenum paramid)

GLuint

Specifies that a parameter is varying for this shader. All parameters of a shader are
uniform or nonvarying unless specified as varying by the time glEndShaderEXT()
is called?®7.

GL_INVALID ENUM is generated if param:d is not a valid shader parameter or a uni-
form parameter.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GL_INVALID OPERATION is generated if called other than between
glNewShaderEXT() and glEndShaderEXT().

glNewShaderEXT(GLenum shaderfuncid)

Creates and returns a shader ID for a new instance of the specified shader function.

GL_INVALID_ENUM is generated if shaderfuncid does not refer to a valid shader func-
tion, and 0 is returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), and 0 is returned.

void glShaderEXT(GLenum face, GLuint shaderid)

Sets the shader to be used for shading the specified face of primitives defined fol-
lowing the call. face may be GL_FRONT, GL_BACK, or GL_FRONT_AND BACK.

GL_INVALID_ENUM is generated if face is not one of the allowed values.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

void glSurfaceEXT(GLunit shaderid, GLenum paramid, TYPE params)

Sets the value of nonvarying parameters of a shader instance. The values of
varying parameters are set with glMaterial().

Nonvarying parameters cannot be specified separately for front and back faces; there
is a single value used regardless of whether the front or back face of a primitive is
rasterized. This can be addressed by using different shaders on front and back faces.

A nonvarying parameter has an initial value defined by the shader using that pa-
rameter. The value is set when the shader is loaded.

GL_INVALID_ENUM is generated if paramid does not refer to a nonvarying parameter
of the specified shader.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

27While shaderid appears redundant, keeping the parameter allows the possibility of changing a parameter
between varying and nonvarying on the fly, in a possible future implementation.

25

7.4 To Be Done

e Parameter Transformation (normals, texture matrix).
e Parameter Generation (glTexCoord(), sphere normals).

Implicit Parameters (texture scale factors, texture ID, normals).

e GL _FRONT_AND BACK vs. uniform parameters and optimized lists.

8 Programmable Lighting
The programmable lighting model used in PxGL introduces these new terms:

Light Function - A function which takes as input a set of light source parameters and a
set of shader parameters at a sample, and generates an illumination at that sample
which is used by a shader function to compute color of the sample.

Light Group - A subset of all existing light instances, used to illuminate specified primi-

tives during shading. Only one light group may be active at any time.

8.1 Creating Lights

To create a light, the following steps must be taken:
e Load a light function and obtain its ID with glLoadExtensionCodeEXT()
e Create the new light and obtain a light ID using glNewLight EXT().

e Obtain parameter IDs of light source parameters using
glGetLightParameterName?®EXT().

e Call glLight() to specify light source parameters.

8.1.1 Example

I don’t have a good example of a user-defined light function. This example just creates a
new instance of the built-in OpenGL light function, which is named gl light _function.
The light is made a red, diffuse, infinite light in direction -Z.

glBeginFrameEXT();

// Get the light function ID for the built-in light model
// by "loading" it.
GLenum lightfuncid =
glLoadExtensionCodeEXT(GL_LIGHT_FUNCTION_EXT, "gl_light_function");

// Create a new instance of the OpenGL light function

28 This call needs to be added.

26

GLenum lightid = glNewLightEXT(lightfuncid);

// Get IDs of light source parameters. We do not really

// need to do this for the built-in light function; GL_POSITION

// and GL_DIFFUSE could be used instead.

GLenum positionid = glGetLightParameterNameEXT("gl_light_position");
GLenum diffuseid = glGetLightParameterNameEXT("gl_light_direction");

0.0, -1.0, 0.0 };

GLfloat position[4] = { 0.0,
=4{1.0, 0.0, 0.0, 1.0 };

GLfloat diffusecolor[4]
glLightfv(lightid, positionid, &position);
glLightfv(lightid, diffuseid, &diffusecolor);

Example - Creating a light

8.2 Using Lights

There is no limit on the number of lights which may be created (above and beyond the
built-in OpenGL lights). Lights are placed in light groups, which are arbitrary subsets of
the defined lights with enumerated IDs; the current light group may be changed at any time
and that set of lights is applied when shading primitives. Initially a single light group,
GL_DEFAULT LIGHT _GROUP EXT, exists and is the current light group.

To change the lighting environment, the following steps must be taken:

e Optionally create a new light group.

e Place desired lights in the light group.

e Specify the current light group.

e Render primitives with the specified light group illuminating them.

8.2.1 Example

This continues the previous example, placing the new light in a new light group, selecting
that as the current light group, and drawing a triangle.

// Create a new light group
GLuint groupid = glNewLightGroupEXT();

// Add the new light to this group
glEnableLightGroupEXT(groupid, lightid);

glStartGeometryEXT();
glLightGroupEXT(groupid);

// Primitives drawn now are lit by the new light

27

8.3

void

void

void

void

void

void

void

void

Example - Using a light

Light API Definitions

glDeleteLightEXT(GLenum lightid)

Removes the definition of the specified light; lightid is unused after this call.
GL_INVALID_VALUE is generated if lightid is not a defined shader 1D.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

glDeleteLightGroupEXT(GLuint groupid)

Removes the definition of the specified light group; groupid is unused after this call.
GL_INVALID VALUE is generated if groupid is not a defined light group.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

glDisable(GLenum cap)

glEnable(GLenum cap)
glDisable() and glEnable() are extended to operate on light groups. When cap
is GL_LIGHT %, the specified built-in light i1s removed from or added to the current
light group?®.

glDisableLightGroupEXT(GLuint groupid, GLenum lightid)

glEnableLightGroupEXT(GLuint groupid, GLenum lightid)

Removes or adds the specified light to the specified light group.

GL_INVALID VALUE is generated if groupid is not a valid light group ID or lightid is
not a valid light ID.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().
glGet (GLenum pname, TYPE *params)

glGet() is extended to accept parameter GL_LIGHT_GROUP_EXT, which returns the
current light group as specified via glLightGroupEXT().

glGetLight(GLenum lightid, GLenum paramid, TYPE *param)

glGetLight() is extended so that paramid can refer to light source parameters
defined by dynamically loaded light functions.

GL_INVALID_ENUM is generated if lightid is not a valid light or if param:d is not a
light source parameter of the light

29GL_LIGHTING could be implemented as a flag on the entire light group; at present it has no effect.

28

void glGetLightFunctionEXT(GLenum lightid, GLenum *lightfuncid)

Returns in lightfuncid the light function used by the specified light.
GL_INVALID_ENUM is generated if lightid is not a valid light.

GLboolean glIsLightEXT(GLenum lightid)

Returns TRUE if lightid is used for an existing light, FALSE otherwise.
GLboolean glIsLightGroupEXT(GLuint groupid)

Returns TRUE if group:id is used for an existing light group, FALSE otherwise.

void glLight(GLenum lightid, GLenum paramid, TYPE param)

glLight() is extended so that paramid can refer to light source parameters defined

by dynamically loaded light functions.

GL_INVALID ENUM is generated if paramid is not a light source parameter either of

the built-in OpenGL light function or of a light function previously loaded.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT().

void glLightGroupEXT(GLuint groupid)

Sets the light group to be used for lighting primitives specified following the call.

GL_INVALID VALUE is generated if groupid is not a defined light group ID.

void glLightModelEXT(GLenum pname, TYPE param)

glLightModel() is extended so that when two-sided lighting is enabled via
GL_LIGHT MODEL _TWO_SIDE, it includes all varying parameters of the shader being
used for a primitive. This allows texture coordinates, texture IDs, and user-defined

shader parameters to differ on front and back faces of a primitive.

GLenum glNewLightEXT(GLenum lightfuncid)

Creates and returns a light ID for a new instance of the specified light function.

GL_INVALID_ENUM is generated if lightfuncid does not refer to a valid light function,

and 0 1s returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT(), and 0 is returned.

GLuint glNewLightGroupEXT()

Creates a new light group and returns the group ID. Initially no lights are in the

group; lights may be added with glEnableLight GroupEXT().

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT().

29

9 Programming Other Pipeline Stages - to be written

9.1 Atmospheric
Talk about glFog() here.

9.2 Warping
To be defined.

10 Transparency and Other Blending Effects

Because PixelFlow is an image composition architecture, in which there is not a single frame
buffer during rasterization, the effects possible via blending in OpenGL must be done via
alternate methods.

Further discussion about blending across frame boundaries and such will go here later.

10.1 Transparency

Transparent primitives may be handled in one of two ways. The first is screen-door trans-
parency. This supports a limited number of levels of transparency, depending on the number
of samples/pixel being rasterized, but is the most general method. The second method is a
multipass algorithm which extracts all transparent primitives and renders them properly in
sorted order using multiple rendering passes to resolve visibility (Apgar paper citation goes
here). Unlike alpha blending in OpenGL, neither approach relies on the database being
traversed in any particular order.
To use transparent primitives, several steps must be taken:

e Enable transparency on a per-frame basis using glTransparencyEXT().
e Enable transparency on a per-primitive basis using glEnable().

e Specify transparent primitives by defining colors with non-unitary alpha components.
The new calls are:

void glTransparencyEXT(GLenum mode)
Specifies the method by which transparent primitives are rendered. Must be called
during the frame setup stage (section 2.1).

mode may take on the following values:

GL_TRANSPARENCY NONE_EXT - transparency is not handled. All primitives
are treated as opaque regardless of alpha values.

GL_TRANSPARENCY SCREEN DOOR_EXT - transparency is done by turning on
a fraction of the samples in each pixel corresponding to the alpha value of

30

that fragment. This is usually the fastest and lowest quality mode.

GL_TRANSPARENCY MULTIPASS EXT - transparency is done by multipass ren-
dering of potentially transparent primitives. This is usually the slowest and
highest quality mode.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

void glDisable(GLenum cap)

void glEnable(GLenum cap)

glDisable() and glEnable() are extended to support potentially transparent prim-
itives. When cap is GL_TRANSPARENCY EXT and is enabled, primitives may be han-
dled using the transparency mode determined by glTransparencyEXT(). When
disabled, primitives are treated as opaque regardless of their alpha values.

For maximum performance, GL_TRANSPARENCY EXT should be enabled only when
potentially transparent primitives are being rasterized.

10.1.1 Determining Transparency

Determining whether or not primitives are transparent at rasterization time is difficult in a
deferred-shading architecture, since user-defined shaders need not have an input parameter
analogous to the alpha value used by OpenGL. At present, transparency is only handled for
primitives using the built-in OpenGL shaderC.

11 Display List Optimization - to be written

e How to specify optimization; types of optimizations.

e Inheriting state from environment for constant-interpolated params, binding at
glBegin().

e Interaction with glShadeModelEXT().

12 Multiple Application Threads - to be written

Discuss multiple AP contexts, ordering issues, frame synchronization points, global names-
paces for lights, shaders, and rasterizers, local (perhaps) namespaces for display lists.

13 OpenGL Variances - to be written

Tables of (enumerant,relevant calls) and (call,valid frame stages) will go here.

3015 this true? We've gone around on possible approaches to shaders generating transparent samples
before, but there has been no resolution yet. What does the current implementation do?

31

Depth buffer always enabled.

Depth function always GL_LESS.

e Transparency specially handled (see section 10.1).

And lots more. ..

14 Unsupported OpenGL Features - to be written

Lee’s lengthy document should be referenced here.

15 Function, Enumerant, and Name Tables

Parameters of the built-in light, shader, and rasterizer functions have all been assigned string
names which map to enumerated IDs. Existing OpenGL enumerants (such as GL_AMBIENT or
GL_LIGHTO) are recognized as aliases for the actual IDs. String names of built-in parameters,

and the corresponding OpenGL enumerants, are listed below.

15.1 Light Function and Parameter Names

There is a single built-in light function corresponding to the OpenGL lighting model, named
gl light function. Table 1 lists parameters of this function, which correspond to OpenGL

light source parameters.

gl light spot_direction

gl light spot_exponent

gl light spot_cutoff

gl light_constant_attenuation
gl light linear_attenuation

gl light_quadratic_attenuation

String Name OpenGL ID
gl light_ambient GL_AMBIENT
gl light diffuse GL_DIFFUSE
gllight _specular GL_SPECULAR
gl light_position

GL_POSITION

GL_SPOT DIRECTION
GL_SPOT_EXPONENT
GL_SPOT_CUTOFF
GL_CONSTANT _ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

Table 1: Built-in light source parameter names

32

15.2 Rasterizer Function and Parameter Names

Table 2 lists the built-in rasterizer function names and the corresponding OpenGL IDs.

String Name OpenGL ID
1 teri int
gl rasterizer points GL_POINTS
gl rasterizer_lines 6L LINES
gl rasterizer line_strip

GL_LINE_STRIP
gl rasterizer_line_loop

GL_LINE_LOOP

gl rasterizer triangles GL TRIANGLES

gl rasterizer triangle strip GL TRIANGLE. STRIP

gl rasterizer triangle fan GL_TRIANGLE FAN

1 teri d
gl rasterizer _quads GL_QUADS

1 teri d_stri
gl _rasterizer quad_strip GL_QUAD_STRIP

gl rasterizer polygon GL_POLYGON

Table 2: Built-in rasterizer functions

There is a single parameter of built-in rasterizers, named gl_vertex. Vertices are nor-
mally specified using glVertex() rather than glRastParamEXT() (§6.3).

15.3 Shader Function and Parameter Names

There is a single built-in shader function corresponding to the OpenGL shading model,
called gl_shader function. Table 3 lists parameters of this function and the corresponding
OpenGL material parameter names.

15.4 Atmospheric Function and Parameter Names

There is a single built-in atmospheric function corresponding to the OpenGL fog model,
called gl fog function. Table 4 lists parameters of this function and the corresponding
OpenGL fog parameter names.

15.5 Interpolator Names

Table 5 lists the built-in interpolator functions which may be used with the built-in rasterizer
functions. The constant and implicit interpolators may also be used with any application-
defined rasterizer function.

33

String Name OpenGL ID
glshader_ambient GL_AMBIENT
glshader diffuse GL_DIFFUSE

gl_shader_color
gl_shader_specular

gl _shader_emission
gl _shader_shininess

gl _shader_textureid
gl_shader normal

gl_shader_u, gl shader_v
gl_shader_du, gl shader_dv

Use glColor()
GL_SPECULAR
GL_EMISSION

GL_SHININESS

Use texture object calls
Use glNormal()

Use glTexCoord()
Implicitly generated

Table 3: Built-in material parameters

String Name OpenGL ID
glfog-mode GL_FOG_MODE
glfog_density GL_FOG_DENSITY
gl fog start GL_FOG_START
gl fog_end

GL_FOG_END

gl _fog_color

GL_FOG_COLOR

Table 4: Built-in atmospheric parameters

String Name

OpenGL ID

gl interpolator_implicit

gl interpolator_constant

gl interpolator flat

gl interpolator_linear

gl interpolator_default

GL_IMPLICIT_INTERPOLATOR_EXT
GL_CONSTANT_INTERPOLATOR_EXT
GL_FLAT_INTERPOLATOR_EXT
GL_LINEAR_INTERPOLATOR_EXT
GL_ DEFAULT_INTERPOLATOR_EXT

Table 5: Built-in interpolator names

34

15.6 Defined Constants

Table 6 lists manifest constants in PxGL which are not in OpenGL, along with the corre-
sponding commands these constants are used in.

Constant Associated Commands
GL_BACK_SHADER EXT, glGet()
GL_FRONT _SHADER _EXT,

GL_LIGHT _GROUP_EXT

GL DEFAULT LIGHT _GROUP_EXT glLight GroupEXT()

GL_CONSTANT_INTERPOLATOR EXT. glMateriallnterpEXT()
GL_DEFAULT_INTERPOLATOR_EXT,

GL_FLAT_INTERPOLATOR EXT,

GL_IMPLICIT_INTERPOLATOR_EXT,
GL_LINEAR_INTERPOLATOR EXT

GL_ATMOSPHERIC FUNCTIONEXT, glLoadExtensionCodeEXT()
GL_LIGHT FUNCTION_EXT,

GL_RASTERIZER FUNCTION_EXT,

GL_SHADER FUNCTION_EXT,

GL_WARPING_FUNCTION_EXT

GL_TRANSPARENCY EXT glEnable()

GL_TRANSPARENCY NONE_EXT, glTransparency EXT()
GL_TRANSPARENCY _SCREEN DOOR_EXT,
GL_TRANSPARENCY MULTIPASS_EXT

many

GL_UNSUPPORTED_OPERATION_EXT

Table 6: Defined constants

16 Glossary

Interpolator - A method for combining parameter values specified at one or more
discrete locations on a primitive being rasterized to generate values for that param-
eter at all other locations on the primitive where it 1s not specified.

Light Function - A function which takes as input a set of light source parameters
and a set of shader parameters at a sample, and generates an illumination at that
sample which is used by a shader function to compute color of the sample.

Light Group - A subset of all existing light instances, used to illuminate specified
primitives during shading. Only one light group may be active at any time.

Nonvarying Parameter - A shader parameter whose value is the same for all
samples rasterized using that shader.

Rasterizer Function - A function which takes as input a set of rasterizer param-
eters and generates screen-space samples at which the function is visible.

Rasterizer Parameter - A parameter to a rasterizer function.

Sequence Point - Specifies the binding time for a group of rasterizer and shader
parameters.

Shader Function - A function, either built-in to PxGL or loaded at runtime, which
takes as input a set of shader parameters and generates as output a color.

Shader Parameter - An input argument to a shader function.

Shader - An instance of a shader function which binds a subset of the function’s
parameters to be nonvarying for all samples to which the shader is applied.

Uniform Parameter - A shader parameter whose value is the same for all samples
rasterized using that shader.

Varying Parameter - A shader parameter whose value may be different in each
sample rasterized using that shader.

Rasterizer Boards - Hybrid MIMD/SIMD parallel processors which transform
subsets of the primitives making up an image, rasterizing shader parameters into
local sample buffers These buffers are later combined using the image composition
network as directed by the rendering recipe.

Rendering Recipe - A list of instructions describing how to combine rasterized
screen regions containing shading parameters using the image composition network,
shade the resulting visible samples, and combine shaded samples into the frame
buffer. The rendering recipe is normally defined by state such as viewport size and
number of supersamples used for antialiasing.

Sample Buffer - buffers on rasterizer boards which contain samples of locally-
visible surfaces and shading parameters for those samples.

17 Credits

The PixelFlow API has developed by discussion among the following people®!:

Dan Aliaga, Jon Cohen, Lawrence Kestleoot, Anselmo Lastra, Jon Leech, Jonathan
McAllister, Steve Molnar, Marc Olano, Greg Pruett, Yulan Wang, and Rob Wheeler (UNC),
and Rich Holloway, Roman Kuchkuda, and Lee Westover (HP)

317 think this covers everyone who had significant input, but please correct me - JPL.

36

References

[1] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 1.1). Silicon Graphics, Inc., 1995. Unpublished; available at UNC in
file: /home/pxfl/doc/software /SGI/glspec.ps

[2] OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-Wesley Pub-
lishing Company, Inc., 1992.

[3] Steve Molnar, John Eyles, and John Poulton. PizelFlow: High-Speed Rendering Using
Image Composition. Computer Graphics vol. 26 no. 2, July 1992.

[4] Steve Upstill. The RenderMan Companion: A Programmer’s Guide to Realistic Com-
puter Graphics. Addison-Wesley Publishing Company, Inc., 1990.

[5] Marc Olano. PizelFlow Shading Language. Unpublished; talk to Marc for a copy.

37

Index

atmospheric effects 30
atmospheric function names 33
atmospheric parameter names 33
blending effects 30

changelog 6

code example - creating lights 26
code example - creating shaders 20
code example - frame generation 9
code example - using lights 27
code example - using rasterizers 16
code example - using shaders 21
credits 36

defined constants 35

determing transparency 31

display list optimization 31

end of frame 9

enumerant namespace 12

frame generation 8

frame setup 9

function and enumerant tables 32
function namespace 12

geometry definition 9
glDeleteLight EXT 28
glDeleteLightGroupEXT 28
glDeleteShaderEXT 23
glDisableLightGroupEXT 28
glDisable 28

glDisable 31

glEnableLight GroupEXT 28
glEnable 28

glEnable 31

glEndShaderEXT 23
glGetLightFunctionEXT 29
glGetLight 28
glGetMateriallnterpEXT 18
glGetMaterialParameterNameEXT 23
glGetMaterialParametersEXT 23
glGetMaterialParameterStringEXT 24
glGetMaterial 23
glGetNumMaterialParametersEXT 24
glGetRastParameterNameEXT 17
glGetRastParameterStringEXT 17
glGetRastParamEXT 16

38

glGetSurfaceEXT 24

glGet 23

glGet 28

gllsLight EXT 29
gllsLightGroupEXT 29
gllsMaterial ParameterEXT 24
gllsMaterialUniformEXT 24
gllsShaderEXT 24
glLightGroupEXT 29
glLightModelEXT 29

glLight 29
glLoadExtensionCodeEXT 13
glMateriallnterpEXT 18
glMaterial VaryingEXT 25
glMaterial 24
gINewLight EXT 29
gINewLight GroupEXT 29
gINewShaderEXT 25

glossary 35

glRastParamEXT 17
glSequencePoint EXT 17
glShaderEXT 25
glSurfaceEXT 25
glTransparency EXT 30
glVertex() and sequence points 17
image warping 30

interpolator API definitions 18
interpolator names 33
interpolators 18

interpolator 14

introduction 5

light API definitions 28

light function names 32

light function 26

light group 26

light parameter names 32
lights, creating 26

lights, using 27

loading application-defined code 13
multiple application threads 31
names of OpenGL objects 13
namespace 12

new namespaces 12

nonvarying parameter 20
OpenGL variances 31
pipeline programming 30
primitive distribution algorithm 10
primitive distribution 10
programmable lighting 26
programmable rasterization 14
programmable shading 19
pxDistributionMode 10
pxGetDistributionMode 11
rasterizer API definitions 16
rasterizer function names 33
rasterizer function 15
rasterizer parameter names 33
rasterizer parameter 15
rasterizers, using 15
roadmap 6

sequence point 15

shader function names 33
shader function 19

shader parameter names 33
shader parameter 19
shaders, creating 20
shaders, using 21

shader 19

shading API definitions 23
transparency 30

uniform parameter 20
unsupported features 32
varying parameter 20
vertex array extensions 17

39

